• Title/Summary/Keyword: phase shifted PWM

Search Result 66, Processing Time 0.029 seconds

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

An Equivalent Carrier-based Implementation of a Modified 24-Sector SVPWM Strategy for Asymmetrical Dual Stator Induction Machines

  • Wang, Kun;You, Xiaojie;Wang, Chenchen
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1336-1345
    • /
    • 2016
  • A modified space vector pulse width modulation (SVPWM) strategy based on vector space decomposition and its equivalent carrier-based PWM realization are proposed in this paper, which is suitable for six-phase asymmetrical dual stator induction machines (DSIMs). A DSIM is composed of two sets of symmetrical three-phase stator windings spatially shifted by 30 electrical degrees and a squirrel-cage type rotor. The proposed SVPWM technique can reduce torque ripples and suppress the harmonic currents flowing in the stator windings. Above all, the equivalent relationship between the proposed SVPWM technique and the carrier-based PWM technique has been demonstrated, which allows for easy implementation by a digital signal processor (DSP). Simulation and experimental results, carried out separately on a simulation system and a 3.0 kW DSIM prototype test bench, are presented and discussed.

Harmonic Analysis of 20MW MMC HVDC System with PSC(Phase Shift Carrier) PWM (PSC(Phase Shifted Carrier) PWM 방식에 따른 20MW HVDC 시스템의 고조파 분석)

  • Hong, JungWon;Kim, Jung Sung;Yoo, Hyunho;Jung, HongJu
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.442-443
    • /
    • 2018
  • 본 논문에서는 스위칭 기법에 따른 MMC HVDC 시스템의 고조파 특성을 분석하여, 그 결과를 소개하였다. MMC 토폴로지 기반의 VSC HVDC는 SM(Sub-Module)을 다수를 직렬 연결하여, 이를 개별 제어함으로 써 스위칭 기법에 따라 동일한 수의 SM을 가지고 출력전압의 레벨수를 조정하여 고조파 특성을 개선할 수 있다. (주) 효성에서는 행원 풍력단지에 구축한 20MW HVDC 시스템의 고조파 특성을 분석하기 위하여, 각각 11-level과 21-level의 출력전압을 형성하여 성능 시험을 진행하였다. 본 논문에서는 PSC PWM 방식을 이용하여 출력전압 Level 형성에 따른 고조파 특성 시험에 대한 결과를 소개하였다.

  • PDF

A Design of PS FB-ZVS PWM Converter with Magnetron Load (부하특성을 고려한 마그네트론 구동용 PS FB-ZVS PWM 컨버터의 설계)

  • Lee Wan-Yun;Chung Gyo-Bum;Shin Pan-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.360-363
    • /
    • 2001
  • The conventional 60(Hz) power supply for driving magnetron in microwave oven has disadvantages of heavy weight and low efficiency due to 60(Hz) High Voltage Transformer(HVT), capacitor and the phase control of thyristors with open-loop controller. To alleviate these disadvantages, this paper proposes a 20(kHz) phase-shifted(PS) Full-Bridge(FB) Zero- voltage-Switched(ZVS) PWM converter to drive a 600(W) magnetron in an 1(kW) microwave oven and to control the average anode current.

  • PDF

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Modulation, Harmonic Analysis, and Balancing Control for a New Modular Multilevel Converter

  • Li, Binbin;Zhang, Yi;Wang, Gaolin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.163-172
    • /
    • 2016
  • The modular multilevel converter (MMC) has been receiving increased attentions in recent years. The new modular multilevel converter is a derivative topology from the traditional MMC in which the number of sub-modules (SMs) necessitated by each phase can be reduced by one. This paper presents a phase-shifted carrier pulse-width modulation (PSC-PWM) for the new MMC with an optimal phase-shifted angle to suppress the harmonics of the output voltage. Further, the harmonic features when the capacitor voltage of the middle SM is selected as two different values are also investigated. Moreover, in order to avoid introducing an unnecessary dc offset current at the ac terminals of the new MMC, a novel capacitor voltage balancing scheme is proposed by adjusting the amplitude of the reference signals rather than the offset. Finally, the validity and effectiveness of the proposed modulation and balancing schemes have been verified by experimental results based on a three-phase prototype of the new MMC.

DC-Link Voltage Unbalance Compensation of Reactive Power Compensator using Multi-level Inverter (멀티레벨 인버터를 이용한 무효전력 보상장치에서의 DC-Link 전압 불평형 보상)

  • Kim, Hyo-Jin;Jung, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, we use a static synchronous compensator(STATCOM) with cascaded H-bride topologies, because it is easy to increase capacity and to reduce total harmonic distortion(THD). When we use equipment for reactive power compensation, dc-link voltage unbalances occur from several reasons although loads are balanced. In the past, switching pattern change of single phase inverter and reference voltage magnitude change of inverter equipped with power sensor have been used for dc-link voltage balance. But previous methods are more complicated and expensive because of additional component costs. Therefore, this paper explains reasons of dc-link voltage unbalance and proposes solution. This solution is complex method that is composed of reference voltage magnitude change of inverter without additional hardware and shifted phase angle of inverter reference voltages change. It proves possibility through 1000[KVA] system simulation.

An analysis of a phase- shifted parallel-input/series-output dual converter for high-power step-up applications (대용량 승압형 위상천이 병렬입력/직렬출력 듀얼 컨버터의 분석)

  • 강정일;노정욱;문건우;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.400-409
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output(PISO) dual converter for tush-power step-up applications has been proposed. Since the proposed converter shows a low switch turn-off voltage stress, switching devices with low conduction loss can be employed in order to improve the power conversion efficiency. Moreover, it features a low output capacitor root-mean-square(RMS) current stress, low input current and output voltage ripple contents, and fast control-to-output dynamics compared to its PWM counterpart. In this paper, the operation of the proposed converter is analyzed in detail and its mathematical models and steady-state solutions are presented. A comparative analysis with the conventional PWM PISO dual converter is also provided. To confirm the operation, features, and validity of the Proposed converter, experimental results from an 800W, 24-350Vdc prototype are presented.

  • PDF

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.

THD Analysis of Output Voltage According to PWM Carriers in Single-Delta Bridge Cell MMC (Single-Delta Bridge Cell MMC의 전압합성을 위한 PWM 반송파 형태에 따른 출력전압의 THD 분석)

  • Jae-Myeong, Kim;Jae-Jung, Jung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.526-534
    • /
    • 2022
  • The modular multilevel converter (MMC) has been widely applied to various industrial areas because of its various advantages and structural characteristics. Therefore, many methods for synthesizing the output voltage of MMC have been studied. Among these methods, phase-shifted pulse width modulation (PSPWM) is frequently used in MMC systems because it has diverse merits, such as excellent output qualities even with a small number of cells and uniform power distribution among cells. In this study, the total harmonic distortion (THD) of the output voltage is analyzed in accordance with the number of cells in one arm of a single-delta bridge cell MMC in order to compare PSPWM methods in terms of the THD of the output voltage. The physical characteristics of the triangle and sawtooth carrier waves used for the PSPWM and the mathematical modeling of output voltage are introduced. Then, the obtained results are verified through real-time simulation of a 1 MW single-delta bridge cell MMC system.