• 제목/요약/키워드: perturbed Cantor set

검색결과 11건 처리시간 0.02초

ON THREE CONDITIONS ON A PERTURBED CANTOR SET

  • BAEK, IN-SOO
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.387-393
    • /
    • 2006
  • We study three conditions which seem similar but a little different on a perturbed Cantor set. Since they give different conditions on a perturbed Cantor set, we have another results corresponding to the conditions. We compare the conditions and give different examples which provide different results.

  • PDF

CANTOR DIMENSION AND ITS APPLICATION

  • Baek, In-Soo
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.13-18
    • /
    • 2004
  • We defined Cantor dimensions of a perturbed Cantor set, and investigated a relation between these dimensions and Hausdorff and packing dimensions of a perturbed Cantor set. In this paper, we introduce another expressions of the Cantor dimensions. Using these, we study some informations which can be derived from power equations induced from contraction ratios of a perturbed Cantor set to give its Hausdorff or packing dimension. This application to a deranged Cantor set gives us an estimation of its Hausdorff and packing dimensions, which is a generalization of the Cantor dimension theorem.

ON A QUASI-SELF-SIMILAR MEASURE ON A SELF-SIMILAR SET ON THE WAY TO A PERTURBED CANTOR SET

  • Baek, In-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권1호
    • /
    • pp.51-61
    • /
    • 2004
  • We find an easier formula to compute Hausdorff and packing dimensions of a subset composing a spectral class by local dimension of a self-similar measure on a self-similar Cantor set than that of Olsen. While we cannot apply this formula to computing the dimensions of a subset composing a spectral class by local dimension of a quasi-self-similar measure on a self-similar set on the way to a perturbed Cantor set, we have a set theoretical relationship between some distribution sets. Finally we compare the behaviour of a quasi-self-similar measure on a self-similar Cantor set with that on a self-similar set on the way to a perturbed Cantor set.

  • PDF

Mutifractal Analysis of Perturbed Cantor Sets

  • Baek, Hun Ki;Lee, Hung Hwan
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.503-510
    • /
    • 2005
  • Let $\left{K_{\alpha}\right}_{{\alpha}{\in}{\mathbb{R}}}$ be the multifractal spectrums of a perturbed Cantor set K. We find the set of values ${\alpha}$ of nonempty set $K_{\alpha}$ by using the Birkhoff ergodic theorem. And we also show that such $K_{\alpha}$ is a fractal set in the sense of Taylor [12].

  • PDF

Hausdorff dimension of some specific perturbed cantor set

  • Baek, In-Soo;Lee, Sang-Hun
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.539-544
    • /
    • 1994
  • We [1] investigated the Hausdorff dimension and the packing dimension of a certain perturbed Cantor set whose ratios are unformly bounded. In this paper, we consider a specific Cantor set whose ratios are not necessarily uniformly bounded but satisfy some other conditions. In fact, in the hypothesis, only the condition of the unform boundedness of ratios on the set is substituted by a "*-condition". We use energy theory related to Hausdorff dimension in this study while we [1] used Hausdorff density theorem to find the Hausdorff dimension of some perturbed Cantor set. In the end, we given an example which explains aformentioned facts.ned facts.

  • PDF

DIMENSIONS OF A DERANGED CANTOR SET WITH SPECIFIC CONTRACTION RATIOS

  • Baek, In-Soo
    • 대한수학회보
    • /
    • 제41권2호
    • /
    • pp.269-274
    • /
    • 2004
  • We investigate a deranged Cantor set (a generalized Cantor set) using the similar method to find the dimensions of cookie-cutter repeller. That is, we will use a Gibbs measure which is a weak limit of a subsequence of discrete Borel measures to find the dimensions. The deranged Cantor set that will be considered is a generalized form of a perturbed Cantor set (a variation of the symmetric Cantor set) and a cookie-cutter repeller.

RELATION BETWEEN FRACTAL MEASURES AND CANTOR MEASURES

  • Baek, In-Soo
    • 대한수학회논문집
    • /
    • 제22권2호
    • /
    • pp.241-246
    • /
    • 2007
  • We investigate the relation between Hausdorff(packing) measure and lower(packing) Cantor measure on a deranged Cantor set. If the infimum of some distortion of contraction ratios is positive, then Hausdorff(packing) measure and lower(packing) Cantor measure of a deranged Cantor set are equivalent except for some singular behavior for packing measure case. It is a generalization of already known result on the perturbed Cantor set.

DIMENSIONS OF MEASURES ON PERTURBED CANTOR SET

  • Baek, In-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.397-403
    • /
    • 2004
  • Cutler showed some duality results about Hausdorff and packing dimensions of a measure on a compact set in Euclidean space if its s-dimensional Hausdorff measure or packing measure is positive. We show that the similar results in a perturbed Cantor set hold according to its quasi s-dimensional Hausdorff measure or packing measure and we find concrete measures in this case while Cutler showed the existence of such measures. Finally under some strong condition, we give a concrete measure whose Hausdorff and packing dimensions are the same as those of the perturbed Cantor set without the condition that it has positive s-dimensional Hausdorff or packing measures.

perturbed Cantor set and quasi-self-similar measure

  • 백인수
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.12.2-12
    • /
    • 2003
  • 미분 가능한 함수가 독립변수의 각 점에서 미분계수를 가지듯이 가장 일반화된 Cantor집합의 각 점에서 weak local dimension 을 갖는다. 이러한 weak local dimension 은 두 가지가 있는데 weak lower local dimension 과 weak upper local dimension 이 있다 weak lower local dimension 은 국소적인 의미로 perturbed Cantor 집합의 lower Cantor dimension 이고 Hausdorff dimension 과 관련이 있다. weak upper local dimension 은 국소적인 의미로 perturbed Cantor 집합의 upper Cantor dimension 이고 packing dimension 과 관련이 있다. 이때 각 점에 대응하는 유관한 측도는 quasi-self-similar measure 이며 그 점의 weak lower local dimension 이 s 이면 그 점의 s-차원 quasi-self-similar measure 의 lower local dimension 이 s 가 된다. 마찬가지로 그 점의 weak upper local dimension 이 s 이면 그 점의 s-차원 quasi-self-similar measure 의 upper local dimension 이 s 가 된다. 따라서 이와 같은 사실을 이용하면 가장 일반화된 Cantor집합의 각 점에서의 weak local dimension 을 이용하여 그 집합의 Hausdorff 또는 packing 차원의 정보를 얻을 수 있을 뿐 더러 weak local dimension 을 이용한 spectrum 을 또한 구할 수 있다. 한편 weak local dimension 과 유관한 quasi-self-similar measure 는 집합의 spectrum을 생성하며 이 spectrum 을 이루는 각 부분집합의 차원에 대하여 보다 좋은 정보를 주는 transformed dimension 과 또 다른 관련을 갖게 된다.

  • PDF