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CANTOR DIMENSION AND ITS APPLICATION

IN-So0 BAEK

ABSTRACT. We defined Cantor dimensions of a perturbed Cantor
set, and investigated a relation between these dimensions and Haus-
dorff and packing dimensions of a perturbed Cantor set. In this
paper, we introduce another expressions of the Cantor dimensions.
Using these, we study some informations which can be derived from
power equations induced from contraction ratios of a perturbed
Cantor set to give its Hausdorff or packing dimension. This ap-
plication to a deranged Cantor set gives us an estimation of its
Hausdorff and packing dimensions, which is a generalization of the
Cantor dimension theorem.

1. Introduction

We ([1]) investigated the Hausdorff dimension and the packing dimen-
sion of a perturbed Cantor set whose contraction ratios are uniformly
bounded (cf. [4]), that is, the Hausdorff dimension of the perturbed Can-
tor set is equal to its lower Cantor dimension and its packing dimension
is equal to its upper Cantor dimension. Using a weak local dimension
based on Cantor dimension, we ([3]) developed some estimation of Haus-
dorff and packing dimensions of a deranged Cantor set which is the most
generalized form of a Cantor set. But for some complexity of the defini-
tion, we did not find that the estimation applied to a perturbed Cantor
set gives its Cantor dimension theorems. But from an improved form of
the definition of Cantor dimension in this paper, we reconstruct nicer
theorems, which give generalized estimations of Hausdorff and packing
dimensions, than those ([3]) of the weak local dimension theory.

Received March 6, 2003.

2000 Mathematics Subject Classification: 28A78.

Key words and phrases: weak local dimension, deranged Cantor set, Hausdorff
dimension, packing dimension.



14 In-Soo Baek
2. Preliminaries

We recall the definition of a deranged Cantor set ([2], [3]). Let Iy =
[0,1]. Then we obtain the left sub-interval I ; and the right sub-interval
I;2 of I deleting middle open sub-interval of I, inductively for each
7 € {1,2}", where n = 0,1,2,---. Consider E, = U,¢f12}»I-. Then
(En) is a decreasing sequence of closed sets. For each n, we put | I |
/I |=¢cpand | Lo | /| Iy |= cr2 for all 7 € {1,2}",where | I |
denotes the diameter of I. We call I' = ﬂ;ozo FE,, a deranged Cantor set.

We note that if y € F, then there is o € {1,2}" such that (32, Iy =
{y} (Here olk = 41,12, -+ ,ix where ¢ = 41,99, , ik, tks1, " ). Here-
after, we use o € {1,2}"V and y € F as the same identity freely.

We ([3]) recall the local Hausdorff dimension f(o) of o in F

f(o) =inf{s > 0: k(o) =0} = sup{s > 0: h’(0) = oo}
where the s-dimensional local Hausdorff measure
h*(o) = ligrggf(c{ + Ci)(ci\1,1 + C§|1,2)(C§|2,1 + Ci\zg) e (Cff|k,1 + Ci\k,?)a
and dually the local packing dimension g(o) of ¢ in F
g(o) =inf{s > 0: ¢°(0) =0} =sup{s > 0: ¢°(0) = o0}
where the s-dimensional local packing measure

q*(o) = lilrcn sup(cj + Cg)(cfytm + C§|1,2)(Cg|2,1 + Ci|2,2) e (CZ|k,1 + Czjk,z)-
— 0

We recall the s-dimensional Hausdorff measure of F :
B (F) = lim Hj (F)
where Hj(F) = inf{}>°77; | Uy |°: {Un}32, is a d-cover of F}, and the
Hausdorff dimension of F' :
dhnH(F)
= sup{s > 0: H*(F) = oo}(=inf{s > 0: H*(F) = 0})([5], [6])-

Also we recall the s-dimensional packing measure of F :
p*(F) =inf{)_P*(F,): | F. = F},
n=1 n=1

where P*(E) = lims_,o P§(E) and P{(E) =sup{} .2, | Un |*: {Un}32;
is a 6-packing of F }, and the packing dimension of F :

dimy,(F')
= sup{s > 0: p*(F) = oo}(= inf{s > 0 : p*(F) = 0})([5], [6], [7])-
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We note that a deranged Cantor set satisfying c;1 = ap41 and ¢, 2 =
bpt1 for all 7 € {1,2}", for each n = 0,1,2,--- is called a perturbed
Cantor set ([1]).

In a perturbed Cantor set we have the same s-dimensional local Haus-
dorff measure h®(o) for all ¢ € F and the same s-dimensional local
packing measure ¢°(o) for all o € F. So we have the same local Haus-
dorff dimension f(o) for all ¢ € F,which we ([1]) call the lower Cantor
dimension(= dim¢(F')) of F, and the same local packing dimension g(o)
for all o € F, which we call the upper Cantor dimension (= dimg(F))
of F.

3. Main results

In this section, F' means a deranged Cantor set determined by {c,}
with 7 € {1,2}" where n = 1,2,.... Hereafter we only consider a
deranged Cantor set whose contraction ratios {c,} and gap ratios {d.(=
1—(cr1 + ¢r2))} are uniformly bounded away from 0.

Before going into our principal results Theorems 6 and 7, it is fruitful
to know some properties(Lemma 1-Corollary 4) of the ratios {a,}, {bn}
of a perturbed Cantor set F'.

LEMMA 1 ([1]). For the solutions s, satisfying asr + bir = 1,

0 < liminf s, < dimg(F) < dimg(F) < limsup s, < 1.

n—oo

The following theorem gives an improved form of the definition of
Cantor dimensions.

THEOREM 2. dimg(F) = liminf,_,« 2, and dimg(F) = limsup,,_, o, Zn,
where z,, is the solution s of the equation [[;_, (a3 + b]) = 1 for each
neN.

Proof. Let liminf,, .. z, = z. Let € > 0 such that £ — e > 0. Then
0 <z —e <z, for all but finitely many n € N. Hence [[p_,(af " +
b, %) > lpi(af” 4+ b7*) = 1 for all but finitely many n € N. So

liminf, oo [Tp_q(ay © + b ) > 1, which gives z — ¢ < dimg(F).

Clearly z, < z + € for infinitely many n € N. Then [[;_; (afﬂ +

1) < TRa(ef? +87) = 1 for infinitely many n € N. Henco
liminfpoo [T (af T 4+ b77°) < 1, which gives £ + € > dimg(F).

Similar arguments give dimg(F') = limsup,,_, ., Zy. O
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COROLLARY 3. 0 < liminf,—e0 sp < liminf, o 2, < limsup,_, Tn
< limsup,,_, Sn < 1, where s,, is the solution s of the equation a; +b;, =
1 and z,, is the solution s of the equation [[,_,(aj + b5) = 1 for each
neN.

Proof. 1t is immediate from Lemma 1 and Theorem 2. O

From Corollary 3, we have an interesting information about the so-
lutions of the power equations induced from contraction ratios of a per-
turbed Cantor set.

COROLLARY 4. If (s,) converges to some s, then (x,) converges to

COROLLARY 5. liminfy_.o0 851 < liminfy o0 2, = f(0) and g(o) =
lim supy,_,o Topp < limsupy,_,o, ok for all o in F where f(o) is the local
Hausdorff dimension of o and g(o) is the local packing dimension of
o and z);, is the solution s of Hfzo(cf,'i,l + cfyii,z) = 1 and s, is the
solution s ofcfjlk,1 + Czlk,z = 1.

Proof. Tt is immediate from the same arguments of Lemma 1 and
Theorem 2 applied to a deranged Cantor set. O

The following theorem is a dual form of the theorem 1 in [3] noting
that liminfg—co Topx = f(0).

Toik Lok

THEOREM 6. Let x| satisfy Hf:o (Ca|i 1 FCa

given, and for any 0 <t < s, us({o € {1,2}" : liminfy_,o Tk > S}) >
0, where u; is the Borel measure on F' satisfying

) = 1. If positive s is

| [*
pe(I7)=
’ (C’i—+— Cg)(cghl + 621,2)' . (651,1'2,'“ Vik—1,1 + cflﬂ?f" ,ik—1,2)
for each 7 = 41,42, ,ik-1,% where i; € {1,2}, then dimg({oc €

{1,2} : liminfyoco T > s}) > s. Hence if liminfy_oo Ty > s
for all except for countable o in F' then dimpy(F') > s.

Proof. Let o € {0 € {1,2}" : liminfj_.oc T,y > s}. Then for a given
natural number m, T, > s — % for all but finitely many k.

s—2 _2

Then h*~ % (¢) = liminfg 00 HLO(ca'i’f + czli’z”) = 00.

Since ({0 € {1,2}" : liminfyoo Ty > s}) > 0 for any ¢ < s,
following the density theorem argument used in the proof of the theorem

2

1in [3], we get H*"m ({o € {1,2}" : liminfx_.o0 z,p > s}) = oo for each
m. Thus dimg ({o € {1,2}" : liminfy—co Ty > s}) > 5.
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Now assume that liminfx—.co o > s for all except for countable o
in F. Noting that every countable subset of F' has ps-measure 0 and
p(F) = 1 for each t, we easily see that dimy (F) > s. O

We remark that second statement in Theorem 6 also follows from the
theorem 1 in [3]. Now in packing dimension case, the first statement
of the following theorem is essentially the same as the corollary 7 in [3]
noting that limsup,_, ., Tx = g(o). But we rewrite it and give a proof
to give a contrast with the corollary 8 in [3].

) = 1. If positive s is

Lok
oli,1

Lok

THEOREM 7. Let 25 satisfy Hfzo(c oli.2

+c
given, then dim,({o € {1,2}V : limsup;_,, T < 8}) <s.

Hence dimy(F) < s if limsupy_,., ZTo|x < s for all except for count-
able g in F.

Proof. Let o € {o € {1,2}" : limsup,_,, To, < s}. Then for a
given natural number m, z,x < s+ % for all but finitely many k.

2 . E o, st2 s+
Then ¢** (0) = limsupy o, [[io(c, ;T + 5155 ) = 0.

Following the dual density theorem argument related to packing mea-
sure used in the proof of the corollary 3 in [3], we get

ps+%({a = {I,Z}N : liinsupwg]k <s})=0
—00

for each m.
Thus dim,({c € {1,2}" : limsup;_, ., Top < 8}) < s
Now assume that limsupy,_,, T, < s for all except for countable o in
F'. Since the packing dimension of a set is invariant under an increment
of a countable set, we have dim,(F) < s. O
COROLLARY 8. Let ;. be the solution s of Hfzo(czli,l + cj,li’z) =1.
If iminfy oo T, = z for all o € {1,2}Y, then dimy(F) = z. Simi-
larly if imsupy,_,o To; = T for all o € {1,2}¥, then dim,(F) = 7.

Proof. dimy (F') = z follows from our Theorem 6 and the corollary
3 in [3]. Similarly dim,(F) = Z follows from our Theorem 7 and the
theorem 5 in [3]. O

COROLLARY 9 ([1]). Let Fbe a perturbed Cantor set. Ifliminfy_, o, Tn
= g then dimy(F) = z where z, is the solution s of the equation
[Ii=1(a;+b;) =1 for each n € N. Similarly if limsup_,., Tn = T, then
dimp,(F) = 7.
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We remark that easily we can find many examples of deranged Cantor
sets satisfying the conditions of Corollary 8 but Corollary 9.

COROLLARY 10 ([2]). Let s,y satisfy cj‘!’,'ckl + cz‘|’}€k2 = 1.

Iflimy_,o0 Sox = s forall o € {1,2}V then dimg (F) = dim,(F) = s.

Proof. 1t is immediate from Corollaries 5 and 8. O
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