• Title/Summary/Keyword: perturbation solution

Search Result 245, Processing Time 0.024 seconds

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 실의 누설량 및 동특성계수 해석)

  • 하태웅;이용복;김창호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.528-534
    • /
    • 2001
  • Basic equations and its solution procedure are derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients are presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

New method for LQG control of singularly perturbed discrete stochastic systems

  • Lim, Myo-Taeg;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.432-435
    • /
    • 1995
  • In this paper a new approach to obtain the solution of the linear-quadratic Gaussian control problem for singularly perturbed discrete-time stochastic systems is proposed. The alogorithm proposed is based on exploring the previous results that the exact solution of the global discrete algebraic Riccati equations is found in terms of the reduced-order pure-slow and pure-fast nonsymmetric continuous-time algebraic Riccati equations and, in addition, the optimal global Kalman filter is decomposed into pure-slow and pure-fast local optimal filters both driven by the system measurements and the system optimal control input. It is shown that the optimal linear-quadratic Gaussian control problem for singularly perturbed linear discrete systems takes the complete decomposition and parallelism between pure-slow and pure-fast filters and controllers.

  • PDF

A NEW SOLUTION METHOD FOR STATE EQUATIONS OF NONLINEAR SYSTEM

  • Zhang, Cheng-Hui;Tan, Cheng-Hui;Cui, Na-Xin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.175-184
    • /
    • 1999
  • Along with the computation and analysis for nonlinear system being more and more involved in the fields such as automation control electronic technique and electrical power system the nonlin-ear theory has become quite a attractive field for academic research. In this paper we derives the solutions for state equation of nonlinear system by using the inverse operator expression of the so-lutions is obtained. An actual computation example is given giving a comparison between IOM and Runge-kutta method. It has been proved by our investigation that IOM has some distinct advantages over usual approximation methods in that it is computationally con-venient rapidly convergent provides accurate solutions not requiring perturbation linearization or the massive computation inherent in discrietization methods such as finite differences. So the IOM pro-vides an effective method for the solution of nonlinear system is of potential application valuable in nonlinear computation.

THE DELTA STANDING WAVE SOLUTION FOR THE LINEAR SCALAR CONSERVATION LAW WITH DISCONTINUOUS COEFFICIENTS USING A SELF-SIMILAR VISCOUS REGULARIZATION

  • LI, XIUMEI;SHEN, CHUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1945-1962
    • /
    • 2015
  • This paper is mainly concerned with the formation of delta standing wave for the scalar conservation law with a linear flux function involving discontinuous coefficients by using the self-similar viscosity vanishing method. More precisely, we use the self-similar viscosity to smooth out the discontinuous coefficient such that the existence of approximate viscous solutions to the delta standing wave for the Riemann problem is established and then the convergence to the delta standing wave solution is also obtained when the viscosity parameter tends to zero. In addition, the Riemann problem is also solved with the standard method and the instability of Riemann solutions with respect to the specific small perturbation of initial data is pointed out in some particular situations.

PERFORMANCE OF RICHARDSON EXTRAPOLATION ON SOME NUMERICAL METHODS FOR A SINGULARLY PERTURBED TURNING POINT PROBLEM WHOSE SOLUTION HAS BOUNDARY LAYERS

  • Munyakazi, Justin B.;Patidar, Kailash C.
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.679-702
    • /
    • 2014
  • Investigation of the numerical solution of singularly perturbed turning point problems dates back to late 1970s. However, due to the presence of layers, not many high order schemes could be developed to solve such problems. On the other hand, one could think of applying the convergence acceleration technique to improve the performance of existing numerical methods. However, that itself posed some challenges. To this end, we design and analyze a novel fitted operator finite difference method (FOFDM) to solve this type of problems. Then we develop a fitted mesh finite difference method (FMFDM). Our detailed convergence analysis shows that this FMFDM is robust with respect to the singular perturbation parameter. Then we investigate the effect of Richardson extrapolation on both of these methods. We observe that, the accuracy is improved in both cases whereas the rate of convergence depends on the particular scheme being used.

WEAK SOLUTIONS AND ENERGY ESTIMATES FOR A DEGENERATE NONLOCAL PROBLEM INVOLVING SUB-LINEAR NONLINEARITIES

  • Chu, Jifeng;Heidarkhani, Shapour;Kou, Kit Ian;Salari, Amjad
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1573-1594
    • /
    • 2017
  • This paper deals with the existence and energy estimates of solutions for a class of degenerate nonlocal problems involving sub-linear nonlinearities, while the nonlinear part of the problem admits some hypotheses on the behavior at origin or perturbation property. In particular, for a precise localization of the parameter, the existence of a non-zero solution is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. In what follows, by combining two algebraic conditions on the nonlinear term which guarantees the existence of two solutions as well as applying the mountain pass theorem given by Pucci and Serrin, we establish the existence of the third solution for our problem. Moreover, concrete examples of applications are provided.

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 펌프 실의 누설 및 회전체동역학적 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-21
    • /
    • 2001
  • Basic equations and their solution procedure we derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients aye presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Mathematical solution for nonlinear vibration equations using variational approach

  • Bayat, M.;Pakar, I.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1311-1327
    • /
    • 2015
  • In this paper, we have applied a new class of approximate analytical methods called Variational Approach (VA) for high nonlinear vibration equations. Three examples have been introduced and discussed. The effects of important parameters on the response of the problems have been considered. Runge-Kutta's algorithm has been used to prepare numerical solutions. The results of variational approach are compared with energy balance method and numerical and exact solutions. It has been established that the method is an easy mathematical tool for solving conservative nonlinear problems. The method doesn't need small perturbation and with only one iteration achieve us to a high accurate solution.