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AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM
WITH NEUMANN BOUNDARY CONDITION AND
DISCONTINUOUS SOURCE TERM

A. RAMESH BABU AND *N. RAMANUJAM

ABSTRACT. In this article, we consider singularly perturbed Boundary
Value Problems(BVPs) for second order Ordinary Differential Equations
(ODEs) with Neumann boundary condition and discontinuous source term.
A parameter-uniform error bound for the solution is established using the
Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uni-
form meshes. We prove that the method is almost second order of conver-
gence in the maximum norm, independently of the perturbation parameter.
Further we derive superconvergence results for scaled derivatives of solu-
tion of the same problem. Numerical results are provided to substantiate
the theoretical results.
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1. Introduction

Singularly Perturbed Differential Equations appear in several branches of
applied mathematics. Inparticular, convection-diffusion equations model many
fluid flows such as water pollution problems, simulation of oil extraction from
underground reservoirs, flows in chemical reactors, convective heat transport
problems with large Peclet numbers and semiconductor device simulation. An-
alytical and numerical treatment of these equations have drawn much attention
of many researchers [2, 4, 10, 13]. In general, classical numerical methods fail
to produce good approximations for these equations. Hence one has to look
for non-classical methods. A good number of articles have been appearing in
the past three decades on non-classical methods which cover second order equa-
tions. Many authors have studied second order singularly perturbed probelms

Received February 27, 2009. October 16, 2009. *Corresponding author.
© 2010 Korean SIGCAM and KSCAM .

31
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of both reaction-diffusion and convection-diffusion equations of discontinuous
cases and references are therein [5, 6, 7, 8, 11]. Ingeneral the Galerkin FEM
even on layer adapted mesh for convection-diffusion type equations does not
yield satisfactory result because of the convergence of the stability problem of
this method. Hence in [5], authors suggested a SDFEM to overcome this stability
problem. This SDFEM was first introduced in [1] for a convection dominated
convection-diffusion equation with smooth coefficients. The authors proposed
a modification of the standard Galerkin finite element method that actually
represents a Petrov-Galerkin FEM with the test functions adapted in such a
way as to produce a small amount of artificial diffusion in the streamline direc-
tion, thereby enhancing stability. Therefore, this method is also known as the
streamline-diffusion Petrov-Galerkin method. It can be also considered as the
finite element method that adds weighted residuals to the standard Galerkin
FEM. The SDFEM has been applied to numerical solving of single convection
diffusion problem with neumann boundary condition and non-smooth source
function and derive an error estimate of order O(N~21n® N) for Shishkin mesh,
O(N~2) for Bakhvalov-Shishkin mesh, in the maximum norm. ||.||. denotes the
Lo norm on €, ||.||; denotes the L; norm on Q and maximum norm is defined
as [|ull = max;eq [u(z)|.

Remark 1.0.1. Through out this paper, C denotes a generic constant that is

independent of the parameter ¢ and N, the dimension of the discrete problem.

We also assume ¢ < CN~! as is generally the case in practice for convection-
diffusion type equations {3].

In this paper, we consider the following BVP: Find u € C*(Q)NnCH{(QuU{1})N

C?*(Q~ u Q™) such that

Lu = —eu/(z) + b(z)u'(z) + c(z)u(z) = f(z), ze (@ UQT), (11)

u(0) =0, eu (1) =10, (1.2)

blz) >8>0, c(z)=0, [[fl(d<C, (1.3)

where Q := (0,1), Q := [0,1], Q= = (0,d), QF = (d,1),d € Q, ¢ is a small

positive parameter. The function f(x) is assumed to be sufficiently smooth

function on (2~ U Q1) and have a jump discontinuity at z = d. Further it is

assumed that f(z) and its derivatives have right and left limits at the point d.

The function b(z) and c(x) are sufficiently smooth functions on 2, and for any
function w we denote its jump at z = d as [w](d) = w(d+) — w(d—).

Theorem 1.0.2. For k =0,1,2,3 the solution u of the BVP (1.1)-(1.2) can be
decomposed as v = vy +wy on [0,d] and u = va + wy on [d, 1], where the reqular
components vy and vy satisfy '

Lvy (z) = f(x), WP @) < Cl+27R), zeq,
Lus(z) = f(z), Wi (@) < C(1 +e@0), ©eqt,
[[vi@)] < C, |W]@)]<C, [P <C,

7
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while the layer solution components wy and w2 satisfy

Luwy(z) =0, 1w ()] < Cleu' (1)] + e)e kel = 2= g e Q-

8
€

Luwy(z) = 0, lwi (z)] < Clelu' (1)] + e)eke=20-2) 7 e Qt.

Proof. Following the procedure adapted in [8], one can prove this theorem.

2. Finite element formulation

The standard weak formulation of (1.1) is: Find v € V such that
B(u,v) := (ev/,v') + (b, v) + (cu,v) = f*(v), YveV, (2.1)
where V = {v € H'(R) : v(0) = 0} denotes the special Sobolev space and

f*(v) = (f,v) + %v(1) and (.,.) is the inner product on Ls(€2). Now we define
anorm on V associated with the bilinear form B(.,.), called energy norm as

Bt

lIlulllv = [elul? + ellullg)2,
where |jullo := (u, )7 is the standard norm on Ly(£2), 0 < ¢ < c(z)—b (z)/2,z €
Q, while |u|; := [[v/]lo is the usual semi-norm on V. It is obvious that B is

a bilinear functional defined on V' x V. We now prove that it is coercive with
respect to |||.||lv, that is |B(u,u)] > ||lu|||%.

Lemma 2.0.3. A bilinear functional B satisfies the coercive property with re-
spect to ||].}|v-.

Proof. Let uw € V. Then

1 1
B(u,u) = 5|u|f+/ bu’udx—{—/ cu’dr
0 0

b—(;—)(u(l))Q]—/O1 %quz+/Olcu2dx

1
elulr + Q/ udz
0

Blu,u) = |[ulll}-

7

= elul]+]

v

Hence B is coercive with respect to |||.|||v.

Also we observe that B is continuous in the energy norm, that is, |B(u, v)| <
Bolllu||lv - [||v]|lv for some By > 0. Further f* is a bounded linear functional on
V and also bounded by | f*(v)| < C(|jv|lo +|vv(1)|). By Lax-Milgram Theorem,
we conclude that the problem (2.1) has a unique stable solution.
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2.1.Discretization of weak problem. Let QY = {z¢,z1,...,2n}, N € N be
a given mesh and h; = x; — x;_1,i = 1(1)N. Let h; = %,z =1(1)N -1
and Ay = 2. We form the discrete problem as

By (u,v) := (e, 0") + (bu', v +Zh clusz—Z/ (—eu” +bu' + cu)bv'dzx
Te—1

(2.2)
and

friw) = Z fkvk+ thNvN+ hN+lfNUN+’70U -I—Z/ oy fou'dx.
k=1 ksl Tyt

The parameter Jj is called the streamline-diffusion parameter and will be deter-
mined later. Now-the discrete problem of (2.1)-is: Find up € V4, such that

Bh(un,vn) = fr(vn), Y wvn €V, (2.3)

where Vj, C V be the space of piecewise linear functions with the basis {¢;}Y,
given by

=tz € [mio, )
¢i(x) = Eﬁj:—w, T € [T Tiy1]
0, z ¢ [Tio1, Tiga)s

fori =1(1)N — 1 and

_ =R, zeavog,an]
on (@) = {O, T & [xN-1,ZN]

Here we define a discrete energy norm on Vj, associated with the bilinear form
Bi(.,.), as

unlllv, = elunl? + olfun +Z / 5.0 () (1 ().

It is obvious that By is a bilinear functional defined on V;, x Vj,. We can also
prove that it is coercive with respect to |||.}||v;,, that is | Ba(un, un)| > sl||unlllf, ,
for some ¢ > 0. We see that By, is continuous, that is, | By, (un, vs)| < Byll|unl||v; -

l||lun|||v; for some B, > 0. Further fr is a bounded linear functional on V. By
Lax-Milgram Theorem, the discrete problem (2.3) has a unique solution and it
is also stable. The corresponding difference scheme is

LNy, = {“5(D+uz‘ — D7ui) + aiD%ui + B:D " us +viwi = fii (i), i = (1)N -1

e(FEE) + On(FEE) + yvun = fil(éw), i= N, uo =0,
(2.4)
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J— . +a, — Uit1—Us —gy. — UiTUWi-1  — —
where u; = up(x;), DYu; = S DTy = M5t and for i = ()N -1

Ti41
o = mﬂ/' (081 + 8141620118 + Braa b1 8))da

B

i
—m/ (b1 i + 66216, + Sibedi_16))da,

i—

_ Zi Ii+1
v o= hié;-+/ (5¢bc¢;+/ Si+1begldz.

i

and
TN
By = —hN/ (bd'y_16n + SnB P _ Py + Onbedn_19)y)dx
i N—I:EN
W o= hNEJ\V'i‘/ dnbedydz.
IN-1

B2
¢ = 'ﬂ_g'”cHOO[ﬂ—hIi]'
We choose ¢; as above, to preserve an ” M — matrix” of the corresponing coeffi-

cient matrix and d; = 0 if the local mesh step size is small enough, otherwise we
derive §; from the condition o;_; = 0. Since §; is positive we get,

0 h < 26’
5i / L 2 417 / I —1 . b2.e (2'5)
|fx —1 bgidi—1 f (b ¢idi_y +bedidi 1)), hi > F 3
where b = ||b]|oo. We have bounds on &; on { as follows Wb g < b
= 00 Vi nds on ¢; on asoow_————_i_ .
u b(2b + chy) 252

3. General approach for proving error estimates

A general problem of the form B(u,v) = (f,v) + vv(l), Yv € V is dis-
cretized by: find up, € Vi, C V such that Bp(up,vn) = fi(vy), Yon € V. Since
the above discrete problem has a unique solution and some interpolant u! € V;
of u is well defined. We deﬁne a biorthogonal basis of V}, with respect to By, to
be the set of functions {)\J _; which satisfy

Br(¢i, M) = 6y, 1= 1(1)N, (3.1)

where 4;; is the Kronecker symbol. Each function v, € V), can be uniquely
represented as,

N
vp = Z Bp(vn, A')é;
=1

Let us define a linear operator P: V — V}, such that

N
Pvi= ZB}L('U, A s

i=1
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Obviously, P is a projection since Pvj, = vy, for all v, € V;. Further, for a
consistent method we have Pu = uy,. The error u — u;, can be represented as

u—up =u—u + P! —u)+ Pu—uy, (3.2)

Let K = Pu —uy, we shall call this as consistency error, since it vanishes in case
of consistent FEM.

3.1. Shishkin and Bakhvalov-Shishkin meshes. Let N > 4 be a positive
even integer and

de 1-d ¢
2'p 2 'p
Our mesh will be equidistant on Qg, where Qg = (0,d —01) U (d,1 — 02) and
graded on Qo where Qy = (d — 61,d) U (1 — 03,1). First we shall assume o, =
o2 = 70¢/BInN as otherwise N™! is exponentially small compared to e. We
choose the transition points to be

o1 = min{ ToIn N}, o2 = min{ T ln N}, 0 > 2.

Tn/g=d— o0y, CCN/2=d, Z3n/a =1—032.

Because of the specific layers, here we have to use two mesh generating functions
1 and g which are both continuous and piecewise continuously differentiable
and monotonically decreasing functions. The mesh points are

L(d- o) i = 0N/
- Tepi(t), i = N/4+1(1)N/2
T d+ 21— d— )i - N/2), i = N/2+1(1)3N/4

1-— IBO-EQDQ(ti), 1 :3N/4+1(1)N,

where t; = i/N. We define mesh-characterizing functions 1; and 1, by
Spi:_lnwi? i:1a2;
with the following properties

, ClInN for Shishkin meshes
max |¢'| = o
C for Bakhvalov-Shishkin meshes.
e Shishkin mesh

wl (t) — e—2(l—2t)lnN7 1/)2(t) — e—4(1—t)lnN7
o Bakhvalov-Shishkin mesh
PYi(t) =1-21 = N"H(1-2¢t), thot) =1—4(1 - N"H(1-¢).

The set of interior mesh points is denoted by QY = QY \ {zx/2}. Also, for the
both meshes, on the coarse part §0g we have

h; <CN™L.
It is well known that on the layer part of the Shishkin mesh [11]
hi <CeN~1InN
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and of the Bakhvalov-Shishkin mesh we have

b < FeNT max| ¢ 1exp(ms(d—$Z 1)), ©=N/4+1(1)N/2,
’ TgeN "max| ¢ Jexp (L (1 —wi1)), i=3N/4+1(1)N

h;
and P CN ™ 'max| ¢’ | <C.

3.2. Interpolation error.

Theorem 3.2.1. On Bakhvalov-Shishkin mesh for 1y > 2 and ¢ < CN~! it
holds

N—l /1y2 9

lU(.IT)—’U,I(.’L'”S C( ‘ maxhﬁ[) y X € ilp,
C’N—Z, S QSv
where Y = ; fori=1,2.
Proof. Let x € Q7, then u(x) = vi(z) + wi(z) on Q™. Now,
u(z) - ul(z) = vi(e) — v (z) + wi(z) - wi(z),

For the regular part of the interpolation error v;(z) — vi(z) we can use classical
theorem which yields, that is, if z € Qs N,

[v1(z) —vi ()] <C’h2[max v, (z)| <CN~2

Ti—1,%4]

For the singular part of the interpolation error vi(z) — v!(z) that is, if x €
[Tim1, 2] CQNQ,

oa(e) —vi@] < CGelP (N max|yi])?(e (s (d—ei-1))y2
< C’st[N_lrnax|<,o’1|]2
< CN7Z

For the layer part of the interpolation error w;(z) — w!(z) we can also use the
classical estimate on Q. If z € [z;_1, ;] C Qo N Q™ we have

lwi(z) —wi(z)] < Ch?max|w, (z)]
< Ce(N~'max|y|)%e Toe(@=2i-1)  pay [e(—g(dﬂv))l

o T€[ri—1,7i]
< CeN~2(max ¥
If r €fz;—1,2;] C Qs NQ™, then
lwi(z) —wi(z)] < 2fwi(z)]lo

Ce max el—%(@=2)
T€[xi_1.,34)

< (CeN'=™,

Similarly we can prove the result on z € Q7.

N

IA



38 A. Ramesh Babu and N. Ramanujam

Corollary 3.2.2. On Shishkin meshes for 79 > 2, the interpolation error is
bounded as follows

CN-2In’N, zeQ
_ I < ) )
[u(z) @)l < {C’N‘2, z € Qg.

Proof. Using the previous theorem and the values for maxlzp'], one can prove
the present corollary.
4. Pointwise error
The difference scheme (2.4) can be rewritten as

—E Pt S - p M) o M gy = fi(di), i=1(1)N -1,
6_('LLN UN_— 1)+ﬂ UN— uN 1 +7NUN—fh(¢N) Z=N,

ag—1

T &= %, T = L‘,}tﬁ—’,z = 1(1)N — 1. For further analysis
of (3.2), we shall need additional assumptions for the mesh.

where p; =1 —

Lemma 4.0.3. If ¢ < d||bl|ooN™! and 7N~ max|p | < 2(1 - 0)B/|Iblleo for
some 0 < p < 1, then p; > p > 0, r125>0 q1>W||C”oo>O 1=
1(1)N

Proof. Following the procedure adapted in [11], we can prove this Lemma.

From the above Lemma, One can prove that [12]
I¥lleo <C, IN¥) L <C, (4.1)
where A is defined as the solution of the problem (3.1).
4.1. Projection error. From the error representation (3.2), the projection
error at the mesh points is
P(u! —w)(z;) = Br(u! —u, A}, ;€ QY.

But the definition (2.2) of the bilinear form By, and the properties of the inter-
polant u, we have

e fy (! —u)(X) )do + Jo bu" —u)'Nde + 57 haci(u” —u)iX'
Br(u! —u,\) =L+ 1[’% Sren b(,v) dar+zk ISP —u) (A dx

Tr—1

+3, JoE | dbe( (u —w)(\)dz.
(4.2)
First, we have
1
e / (! — w) (\Yda| = 0. (4.3)
0

Integration by parts, smoothness of the function b and Corollary 3.2.2, (4.1) are
used to obtain the second part ;
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|/1 b(ul —u) Ndz| (u! —w)('A* + b\ )dz|
0

I
™
—

Cllu = ufloo (1N lloo + 1(A)'l11)
C”U—UIHoo

IA N

and also the third part will be

N
| Z hici(uf = w) M| < ON" ! — oo | A | co- (4.4)

i=1

For the analysis of the fourth part of By (u! —u, A\*) we shall use the decomposition
from the Theorem 1.0.2 and §; < CN~L. Then the smooth part of the solution,
we have

|Z/ Suer”b(NY dz |< CeN~Y[W oo |(AY |1 < CeNT.
Te—1

Again consider

NS [ | (VY |da
| / Spew”b(N) dx| < Tl ; (4.5)
Z 2N§$‘/2+1 fx“ wl||(A)|dz).

Since the mesh step h; can be bounded below by h; > max{d,1— d}N~!
s, then for the function \* € V,

(@) = - |Ni(ze) — Nizi)]

hy
< CN[Nloo
< CN,Vze€ [$k_1,$k] Cgs.

From the equation (4.5), we have

IZ/ Spew” b(\Y) dz|
Te—1

N/4 3N/4

< Z/ wy|dz + Z wh|dx)
Tk k=N/2+41 " Tk-1
N/4 3N/4
< “le(=Fd-2) gy 4 / —le(=2(-2) 4
Z/x k= NZ/QH Thk—1 ,
N/4 3N/4
<

e~ @) gy 4 / e(_g(l_x))d:c).
o f >

k=N/2+1 7 %k=1
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Since

e_.§<d_,z) < C, e N Q() e_‘,f_(l_z) <
CN-™, zeQ NQs, =

C, zeQ N
CN=™, zeQ*nQs.
(4.6)

N
then IZ/ Srew”"b(N\")'dz| < CeN'~™. Now
k=1

Tk—1

I

N ‘Ek
1> / kb2 (u! — w)' (N dz|
k=1

Thk—1

N oz .
-3 / (! — ) (B (N'Y') da|
k=1

Tk—1

< CN7Yu! - ) o,

and also
N N o 4
|Z/ drbe(u! —w)(\)'dz| < C’N‘I(IZ/ (u! — u)(A")'dz]|)
k=1Y%k-1 k=1"Tk-1

< CN_IHUI — Ul co-

Using the above results and e < CN71, 75 > 2 in (4.2) we have
|Ba(u! —u, X¥)] < Cllu! —ull + N7 u! — ufjoo +eN"? +eN1=0)
< CN~?max|y/|%.
Therefore the projection error is

|Br(u! —u, X)| < CN~2max |4 |2. (4.7)

4.2. Consistency error. Now it remains to estimate the consistency error in
the representation (3.2). Since K = Pu — uy, can be written as

N N
K= (Bn = B)w, X)i + 3 (/" = [i)(W)és.

For a fixed point z; € QF, we have

K(zi) = (Bn—B)(u,X') + (f* = fi)(X)

= thckukA;~/ cu/\’da:—l—/ FXdz = frk i
k=1 6 0 k=1

N 1 1 N
Let K*(z;) = Zl_zkckuk)\fC —/ (cu) Nida +/ fiXdz — th,k/\7c- Then we
k=1 0 0 k=1

can write

N T 1 .
K@) = K@)+ (3 [ (@) ~ () ( [t = ppian). us)
k=1"%k-1 0
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Then
N xk . .
D / ((ew)! — (eu)Nda| < C(fu—1u oo+ N2[ulloc) I
k=1"%k—1
< CN ?max|y/|?,
and
|Z/ PXda] < CUIf = oo + N 2] Floa) 1Nl
< CN7Z

It is enough to estimate

N ' N ‘
*(zi)= thckuw Z / Y Nde = (O hefiXi =Y [ fNdz)
Eh-1 k=1 k=1"Tk-1
= <( ) 7A2>h - <f 7)‘l>h7

where (g, X'}, = S0, gh i AL - f ;:4 gA'dz. Direct computation by Simp-
son rule in the above integral vields

(.M = ¢ Z (hi(gx = 98—1) = hies1(g1 = 98)) A%

In order to estimate the above term, we need to use the decomposition of the
solution 4 = v + w. Then we have

K™ (i) = ((ev)”, XY + {(cw)’, A)n = (f7, A, (4.9)

Now, the first term of the above equation will be

[{(er), X)al < Clle Z i (v, = vi_1) = B (Vg — o)1
< C Z Bk (€k) — hipr 0 (Exe ) Mes En € [, 4]
N-1 '
< CN?"|l Z (Ekt1 — &) Ak
k=1
< ONX o,

by using Theorem 1.0.2, h; < CN~1,5=1(1)N -1 and ||A!||oc < C. Finally, we
get

[ < (), N>, | <CN72, (4.10)
Secondly, we evaluate the third term of the equation (4.9)

[T A0 < CN T2 oo X oo,
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since h; < CN7L, [|Ajoo < C and || f”||eo < C. Finally, we get
(T, Ay € CN2. (4.11)

To estimate the second term, we separately analyze on smooth and layer region.
Let us denote the coefficient in < (cw)’, A\* >, corresponding to A% by my.
Depending on the values of index k, we consider different cases. In general, g,:f
denotes right-limit and left-limit of a function g at a mesh point x.

Case 1: When1 <k < ——1 or %+1 <k< %—1. That is, [l‘k_1,1'k+1] C
Qg. The coefficient m; can be estimated by

Imi| = halcgwi — ef_ywi_y) = hrsr (G Wiy — Cwyd)
< Chk”w“lzoo[xk 1,Zk+1]
< Chi] max |e” - 2|+ max |e'§(1—’”)|], from 1.0.2 and (4.6).

z€N—NQg T€NTNNs

| my |< ChNT™. (4.12)

Case 2: When%+l <k < %—lor%\l+1 < k < N. That is, the
subinterval [2g—1, Zk+1] C Qo. The layer part will be calculated by estimating
my. We have

my = hi(ciwy; — G wi_y) = by Wiy — A wy)

= cp(hi(~wi41 + 2w — wg—1) + (b — hrt1)(Wr1 — wi)) + Al — cr-1)
(wr—1 — wi) + higi(crtr — ex)(wr — wrg1) +wr(—hr
k1 + (hi + Prt1)ex — hrce—1).
Using the Taylor’s expansion for each of the terms in the previous expression
yields

! h3 1
hicr (—wi41 + 2wg — wg—1) = hi(hk — he41)crwy, — —é’iCkw (0r)

hkh2 1"
k+1
—— 2w (Ok41),

(hi = Prgr)ew(wigr — wy) = hk+1(hk - hk+1)ckw (€ks1)s
hi(ck — ce1)(wi—1 — wi) = —hic (pe)w (&),
hiyi(cs1 — cx)(wg — wrr1) = _hk+lc (Pk+1)w ,(§k+1)
wi(—Pis1cesr + (P + hisr)ck — hick—1) = (b} — hiq1)chws — —(h3 ()

+hip 1 (Mes1))whs

where O, &k, pr, Mk € [Th—1, Tk].
To derive an estimate for |my|, we need the following lemma.

Lemma 4.2.1. For the points T_1,Tr, Tis1 € o, Tk £ d = Ty of the mesh
with 79 > 2 the following holds
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| (he = hgya)wy | < CN72
Proof. Let xx_1, Tn, Tup1 € Qo NO~ and zp Ad =2

[ (hie — A (W —w) | < Chyga N72,

N
2

| b — ey |= BN 16 (r) — & (1) |

for pi, pr+1 € (th—1,thr1) Also |wi 1 —we| < hiy1lw)(agy)], ars1 € (T, Tri1)

| (bt = hies)(wis1 —wi) | < CeharaN 72| ¢ () || whloky) |

< ChkﬂN_Q(i/fl(tkH))_2€_§(d_ak+l)~
Using the fact that max || = C and e~ £{d—ak1) < ()2 + N~ we have
| (R = hrga ) (wh 1 — wi) [< Chy N 72,
since 7y > 2. When {251, 25 11] C [d,d+ o2], the above estimate is also true for
these intervals. From the previous analysis, we get
hick(~wis1 + 2wy —wp—1) < ChyN~2 + Chi N ? max| wll Iy
(hi — hey1)er(Wigr —w) < ChpyN72

Applying the above Lemma 4.2.1 to each of the terms in my, of Case 2, we
have
|m| < CheN™? max|¢/|2. (4.13)
Now it remains to prove the estimates at the transition points.
Case 3: When x, k € {%, %} and i # % At these points wyg, Wi+ are
bounded by C'N~™. Then, using the expression for |my| given in Case 2,
| mg |< ChypNTT™. (4.14)

Case 4: When k = §. That is, z;, = d
me = hi(cgwy — el wily) = b (G Wiy — Cwy)
Imi| < hif(cf — ckar)wi + (e — er—1)wy | + hulera (Wi — wiy1)

+ap—1(wj, — wr—1)|

IA

1 _
Chyhyir|wi| + Chilw;, | + Chi(hilcr—1 — ¢ )}, — §hi+1ck w" ()

1
+§h%0k;1’lf)u(’l9¢) + R), 9; € [l'i—la Slii].

We use the asymptotic expansion of the layer components w = w + R, that can
be derived using the technique from {14]. It can be concluded that the leading
part @’ of w' is continuous at x = d, enabling us to use Taylor’s expansions for

estimating wZ’ — wi41 and w;, — wi—. Since R contains lower order terms, we
have

| my |< ChreN~! 4+ Chpe N~ 2 max [¢'|? + Chy N2 max |¢/' |2, (4.15)
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and we use the estimate of max|y’| in the above result to obtain

| < Chi(s + N"')N~'In® N, for Shishkin mesh,
m _
*1=Chi(e + N"1)N-1, for Bakhalov-Shishkin mesh.

Collecting estimates (4.12)—(4.15) from the previously analyzed cases and using
e < CN™!, we have

N-1

. 1 .

< (ew), X' >al < 2> ImalA
k=1

N-1
< C(N™™ 4 N 2max|¢']) Y  he)i
k=1
< ON"Zmax |9/ L2 o)
< CN % max|y/|,
since 79 > 2 and |||y < C. From equations (4.9)—(4.10) and the above

estimates, we have |K*(z;)] < CeN~! + N~2max|¢'|2. Then from (4.8), the
consistency error will be

|K(z;)| < eN~' + N2 max |y |, (4.16)
and if ¢ < CN~! and from equations (3.2), (4.7) and (4.16), we get
[u(z;) — un(z:)] < CN~2max | | (4.17)

On the whole domain € we have
- — _ _af Y _ )
[|w —un| max [u(z) — un(2)] < flu —u oo +Oglig>§vluh(wz) u(x;)]. (4.18)

Theorem 4.2.2. Let u and uy, be the solutions of the BVP (1.1)-(1.2) and (2 3)
respectively and the mazimum norm of the error satisfies with 19 > 2

= un| < CN—2In* N,  for Shishkin mesh
" CN~—2, for Bakhvalov-Shishkin mesh.

Proof. The result follows from (4.18), Corollary (3.2.2) and (4.17).

Remark 4.2.3. In case of a convection-diffusion problem (1.1)—(1.2) with a point
source d(z — d) instead of discontinuous source term f, we can prove the same
result as in Theorem 4.2.2 with the condition —c[u'](d) =1, d e Q.

5.Scaled first derivative estimate

For z € [zi_1,x;], from (3.2), the first derivative of the error representation
can be derived as

(u—up) (2) = (u—ul) (x) + — Bh(u —u, AT = AT, (5.’1)

h;
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Using the same procedure adapted in the proof of Theorem 3.2.1, the first de-
rivative of the interpolation error can be obtained as

(= ') lloo < CN e max [,

The second term of (5.1) can be estimated as
1 I i il 1 I -1 1-7
|5 Br(u! —u, X = AT < h—(C’Hu — Ulloo FENTI 4 eNTTTO),
7 1

If additionally the mesh generating function ¢; have the property min |go;[ >C,
on z; € Qq, then h; > CeN~! and if z; € Qg, we have h; > CN~!. Therefore
the above term will be

Ce™ !N+ Ce!N|u! —ulloos, z €

1 ) )
—Br(ul —u, X' = N <
1hi l = {C’N'1 + CN|uf — |, € Qs.

Corollary 5.0.4. The first derivative estimate of the error between the exact
and finite element solution of the BVP (1.1)-(1.2), for 1o > 2 is given by

CN~'InN, Shishkin mesh

elltw—un) < { o .
CN~1,  Bakhvalov-Shishkin mesh

5.1. Superconvergence results. Using the technique from [9], we prove the
first order derivative estimates of superconvergence results for the midpoints of
the meshes. First, we derive the following result

Lemma 5.1.1. Let the assumptions of Lemma 4.0.3 hold true. Then we have,
formg > 2

le(u’ = wp, v4)| < ON~*(max i )y, Yon € Vi
Proof. Using the definition of B and By, we have

((un — wbvp)(1) + (u — un, b'vp) + (u — up, bv;L)
g(ul — ulh’ U;z) = + ijzl f;:il 56ku”bv/hd$ + Zszl f;:_l 6k(uh — u) b2vhdw
+ fozl f;:_l O (up — u)bcv;Ld:c. :
(5.2)
To estimate the above equation, we analyze seperately each term of the RHS.
Since b is sufficiently smooth function, we get

(un — w)(DOL)on (D] < Cllu— unllollvp -

and we have same bounds for |(u — us,b'vy)| and |(u — wp, bu,)|. Following
the procedure adapted in the proof of the Lemma 7.2 of {11}, we can prove the
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following results

N Tk

> [ ebabdal < CeNT N,

k=1YTk-1

IZ/ w(un — u) b2v, d]
Th—1

IA

CUN max [¢|)?[lvp |11

+N " un — wfloolivnllal;

|Z/ w(un — wbevpdz) < CN™Yup — wlloollvpl1-
Tr~1

By substituting all the above results in (5.2), finally we have,
le(u = wp, v4)| < ON~>(max ¢ [v 1

Using the above Lemma, we can prove the following result [9]:
On shishkin meshes, 79 > 2

ell (@' = un) oo < CN~*(max )%,
Theorem 5.1.2. On Shishkin mesh and 70 > 2, the midpoints are defined as

T, 1 = -“;1;& and at these points the error between scaled derivative of the

T3

finite element approzimation and its exact solution is

el(u—un) (2,_3)| < CN"2(max |y )%, z,_y € QY
Proof. Since the superconvergent points z,_ % of (u— uh)/ are same as that of
(u—u')’, therefore we shall analyze (u — u’)" instead of (u —up,) . We follow the
same procedure adapted in [11] and arrive the required result.

6. Numerical experiments

In this section we experimentally verify our theoretical results proved in the
previous section.

Example 6.0.3. Consider the BVP

—eu'(z) + (1 + 2)u'(z) + 2?u(z) =22 + §p5, =€ Q- UQT, (6.1)
w(0) =0, eu(l)=0.5, (6.2)

For our tests, we take ¢ = 2718, which is sufficiently small to bring out the
singularly perturbed nature of the problem. We measure the accuracy in the
maximum norm and the rates of convergence ¥ and r'*" are computed using
the following formula:

N v 1N gny
= logg(m), ro = lOgg(-Em),
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where

EY = { max [(un)™ (@) = (up)***(z4)l},

BN = max ()™ (20) = ((uh) )iy}

and u,IL denotes the piecewise linear interpolant of up. In Table 1, we present
values of EN | ELN N rLN for the solution of the BVP (6.1)-(6.2) for Shishkin
and Bakhavlov-Shishkin meshes respectively.

From the table it is obvious that the method presented in this paper works
better than the standard upwind difference scheme on Shishkin mesh. Some
extent the numerical results support the theoretical results.

TABLE 1. Values of EN, EVYN and vV, r1'V for the solution of
the BVP (6.1)~(6.2).

N Shishkin mesh Bakhavlov-Shishkin mesh

E r El,l rl,[ El ,rl EI,N Tl,l\’
32 3.0660e-2 | 1.1254 | 3.1324e-4 | 1.6256 | 2.8931e-2 | 1.0403 | 2.8838e-5 | 1.9302
64 1.4054e-2 | 1.0358 | 1.0151e-4 | 1.9232 | 1.4067e-2 | 1.0368 | 7.5671e-6 | 1.9804
128 | 6.8548e-3 | 1.0537 | 2.6765e-5 | 2.1231 | 6.8563e-3 | 1.0540 | 1.9176e-6 | 2.0170
256 | 3.3021e-3 | 1.1028 | 6.1439e-6 | 2.4266 | 3.3022e-3 | 1.1027 | 4.7380e-7 | 2.0626
512 | 1.5375e-3 | 1.2240 | 1.1428e-6 | 1.1600 | 1.5376e-3 | 1.2241 | 1.1342e-7 | 2.1493

1024 | 6.5821e-4 - 5.1142e-7 - 6.5821e-4 - 2.5568¢-8 -
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