References
- A. Ambroso, B. Boutin, F. Coquel, E. Godlewski, and P. G. LeFloch, Coupling two scalar conservation laws via Dafermos self-similar regularization, Numerical Mathematics and Advanced Applications 2008 (2008), 209-216.
- S. Bernard, J. F. Colombeau, A. Meril, and L. Remaki, Conservation laws with discon- tinuous coefficients, J. Math. Anal. Appl. 258 (2001), no. 1, 63-86. https://doi.org/10.1006/jmaa.2000.7360
- F. Bouchut and G. Crippa, Uniqueness, renormalization and smooth approximations for linear transport equations, SIAM J. Math. Anal. 38 (2006), no. 4, 1316-1328. https://doi.org/10.1137/06065249X
- F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal. 32 (1998), no. 7, 891-933. https://doi.org/10.1016/S0362-546X(97)00536-1
- B. Boutin, F. Coquel, and E. Godlewski, Dafermos regularization for interface coupling of conservation laws, Hyperbolic problems: theory, numerics, applications, 567-575, Springer, Berlin, 2008
-
G. Q. Chen and H. Liu, Formation of
$\delta$ -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal. 34 (2003), no. 4, 925-938. https://doi.org/10.1137/S0036141001399350 - C. M. Dafermos, Solutions of the Riemann problem for a class hyperbolic system of conservation laws by the viscosity method, Arch. Rational Mech. Anal. 52 (1973), 1-9. https://doi.org/10.1007/BF00249087
- C. M. Dafermos, Admissible wave fans in nonlinear hyperbolic systems, Arch. Rational Mech. Anal. 106 (1989), no. 3, 243-260. https://doi.org/10.1007/BF00281215
- V. G. Danilov and D. Mitrovic, Delta shock wave formation in the case of triangular hyperbolic system of conservation laws, J. Differential Equations 245 (2008), no. 12, 3704-3734. https://doi.org/10.1016/j.jde.2008.03.006
- V. G. Danilov and V. M. Shelkovich, Dynamics of propagation and interaction of - shock waves in conservation law systems, J. Differential Equations 221 (2005), no. 2, 333-381.
- V. G. Danilov and V. M. Shelkovich, Delta-shock waves type solution of hyperbolic systems of conservation laws, Quart. Appl. Math. 63 (2005), no. 3, 401-427. https://doi.org/10.1090/S0033-569X-05-00961-8
- G. Ercole, Delta-shock waves as self-similar viscosity limits, Quart. Appl. Math. 58 (2000), no. 1, 177-199. https://doi.org/10.1090/qam/1739044
- E. Godlewski and P. A. Raviart, The numerical interface coupling of nonlinear hyper- bolic systems of conservation laws: The scalar case, Numer. Math. 97 (2004), no. 1, 81-130. https://doi.org/10.1007/s00211-002-0438-5
- L. Gosse and F. James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Math. Comp. 69 (2000), no. 231, 987- 1015. https://doi.org/10.1090/S0025-5718-00-01185-6
- L. Guo, W. Sheng, and T. Zhang, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal. 9 (2010), no. 2, 431-458. https://doi.org/10.3934/cpaa.2010.9.431
- J. Hu, A limiting viscosity approach to Riemann solutions containing Delta-shock waves for non-strictly hyperbolic conservation laws, Quart. Appl. Math. 55 (1997), no. 2, 361- 372. https://doi.org/10.1090/qam/1447583
- J. Hu, The Riemann problem for a resonant nonlinear system of conservation laws with Dirac-measure solutions, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 1, 81-94. https://doi.org/10.1017/S0308210500027165
- F. Huang and Z. Wang, Well-posedness for pressureless flow, Comm. Math. Phys. 222 (2001), no. 1, 117-146. https://doi.org/10.1007/s002200100506
- E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math. 52 (1992), no. 5, 1260-1278. https://doi.org/10.1137/0152073
-
S. Jin and P. Qi,
$l^1$ -error estimates on the immersed interface upwind scheme for linear convertion equations with piecewise constant coefficients: a simple proof, Science China: Math. 56 (2013), 2773-2782. https://doi.org/10.1007/s11425-013-4738-2 -
H. Kalisch and D. Mitrovic, Singular solutions of a fully nonlinear 2
$\times$ 2 system of conservation laws, Proc. Edinb. Math. Soc. (2) 55 (2012), no. 3, 711-729. https://doi.org/10.1017/S0013091512000065 - Y. J. Kim, A self-similar viscosity approach for the Riemann problem in isentropic gas dynamics and the structure of the solutions, Quart. Appl. Math. 59 (2001), no. 4, 637-665. https://doi.org/10.1090/qam/1866552
- G. Lai, W. Sheng, and Y. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions, Discrete Contin. Dyn. Syst. 31 (2011), no. 2, 489-523. https://doi.org/10.3934/dcds.2011.31.489
- J. Li and H. Yang, Delta-shocks as limits of vanishing viscosity for multidimensional zero-presure gas dynamics, Quart. Appl. Math. 59 (2001), no. 2, 315-342. https://doi.org/10.1090/qam/1827367
- M. Nedeljkov, Shadow waves: entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal. 197 (2010), no. 2, 487-537.
-
E. Yu. Panov and V. M. Shelkovich,
$\delta$ '-shock waves as a new type of solutions to system of conservation laws, J. Differential Equations 228 (2006), no. 1, 49-86. https://doi.org/10.1016/j.jde.2006.04.004 - C. Shen, Structural stability of solutions to the Riemann problem for a scalar conservation law, J. Math. Anal. Appl. 389 (2012), no. 2, 1105-1116. https://doi.org/10.1016/j.jmaa.2011.12.044
- C. Shen, On a regularization of a scalar conservation law with discontinuous coefficients, J. Math. Phys. 55 (2014), no. 3, 031502, 15 pp. https://doi.org/10.1063/1.4867624
- C. Shen and M. Sun, Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Differential Equations 249 (2010), no. 12, 3024-3051. https://doi.org/10.1016/j.jde.2010.09.004
- C. Shen and M. Sun, Instability of Riemann solutions to a scalar conservation law with discontinuous flux, Z. Angew. Math. Phys. 66 (2015), no. 3, 499-515. https://doi.org/10.1007/s00033-014-0411-z
- W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc. 137 (1999), no. 654, viii+77 pp.
- M. Slemrod and A. E. Tzavaras, A limiting viscosity approach for the Riemann problem in isentropic gas dynamics, Indiana Univ. Math. J. 38 (1989), no. 4, 1047-1074. https://doi.org/10.1512/iumj.1989.38.38048
- M. Sun, Delta shock waves for the chromatography equations as self-similar viscosity limits, Quart. Appl. Math. 69 (2011), no. 3, 425-443. https://doi.org/10.1090/S0033-569X-2011-01207-3
- M. Sun, Formation of delta standing wave for a scalar conservation law with a linear flux function involving discontinuous coefficients, J. Nonlinear Math. Phys. 20 (2013), no. 2, 229-244. https://doi.org/10.1080/14029251.2013.805573
- D. Tan, T. Zhang, and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations 112 (1994), no. 1, 1-32. https://doi.org/10.1006/jdeq.1994.1093
-
G. Wang, One-dimensional non-linear chromatography system and
$\delta$ -shock waves, Z. Angew. Math. Phys. 64 (2013), no. 5, 1451-1469. https://doi.org/10.1007/s00033-013-0300-x - H. Yang and Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differential Equations 252 (2012), no. 11, 5951-5993. https://doi.org/10.1016/j.jde.2012.02.015
- G. Yin and K. Song, Vanishing pressure limits of Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas, J. Math. Anal. Appl. 411 (2014), no. 2, 506-521. https://doi.org/10.1016/j.jmaa.2013.09.050