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A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY
PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS
WITH NEGATIVE SHIFT

P. PRAMOD CHAKRAVARTHY*, K. PHANEENDRA AND Y.N. REDDY

ABSTRACT. In this paper, a fifth order numerical method is presented for
solving singularly perturbed differential-difference equations with negative
shift. In recent papers the term negative shift has been using for delay.
Similar boundary value problems are associated with expected first exit
time problem of the membrane, potential in models for neuron and in vari-
ational problems in control theory. In the numerical treatment for such type
of boundary value problems, first we use Taylor approximation to tackle
terms containing small shifts which converts it to a boundary value prob-
lem for singularly perturbed differential equation. The two point boundary
value problem is transformed into general first order ordinary differential
equation system. A discrete approximation of a fifth order compact differ-
ence scheme is presented for the first order system and is solved using the
boundary conditions. Several numerical examples are solved and compared
with exact solution. It is observed that present method approximates the
exact solution very well.
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1. Introduction

The boundary value problems for singularly perturbed differential-difference
equations arise in various practical problems in biomechanics and physics such as
in variation problems in control theory and depolarization in Stein’s model. The
depolarization in Stein’s model [12] is continuous time, continuous state space,
Markov process whose sample paths have discontinuities of first kind. Lange and
Miura [6-10] gave an asymptotic approach in study of class of boundary-value
problems for linear second-order differential-difference equations in which the
highest order derivative is multiplied by small parameter. In [2] M.K.Kadalbajoo
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and K.K.Sharma presented a numerical method to solve boundary value prob-
lems for singularly perturbed differential-difference equations of mixed type, i.e.,
containing both terms having a negative shift and terms having a positive shift.
In {3] they presented a numerical method to solve boundary value problems for
singularly perturbed differential-difference equations with negative shift. In [4],
they described a numerical approach based on finite difference method to solve
a mathematical model arising from a model of neuronal variability. The math-
ematical modeling of the determination of the expected time for generation of
action potentials in nerve cells by random synaptic inputs in dendrites includes
a general boundary value problem for singularly perturbed differential-difference
equation with small shifts. In [5] Kailash C.Patidar and Kapil K.Sharma pre-
sented non-standard finite difference methods for second order, linear, singularly
perturbed differential-difference equations. The non-standard finite difference
methods are e-uniformly convergent.

The objective of this paper is to determine the fifth order numerical method
to the boundary value problems for singularly perturbed differential-difference
equations with negative shift. In this method, we approximate the shifted term
by Taylor series and apply a difference scheme, provided shifts are of O(e).
The two point boundary value problem is transformed into general first order
ordinary differential equation system. A discrete approximation of a fifth order
compact scheme is presented for the first order system and is solved using the
boundary conditions. Several numerical examples are solved and compared with
exact solution. It is observed that the present method approximates the exact
solution very well.

2. Fifth order numerical method

We consider the boundary value problem for a singularly perturbed differential-
difference equation, which contains only negative shift in the differentiated term

ey’(z) +a(z)y (z - §) + b(z)y(z) = f(z) (1)
on (0,1}, under the boundary conditions
yl@) =dx)on-0<z <0, y(1) =17, 2)

where € is a small parameter, 0 < € << 1 and § is also a small shifting parameter,
0 < § << 1, a(z),b(z), f(z),d(¢) and ¢(z) are smooth functions and 7 is a
constant. Now there are two cases according to the sign of a(z). fa(z) > M >0
throughout the interval [0, 1], where M is a positive constant, then boundary
layer will be in the neighborhood of 0, i.e., on the left side of the interval [0, 1].
If a(z) < M < 0 throughout the interval [0, 1], then boundary layer will be in
the neighborhood of 1, i.e., on the right side of the interval [0, 1].

Since the solution y(z) of boundary value problem (1) and (2) is sufficiently
differentiable, so we expand the retarded term ' (x—d) by Talor series, we obtain

Y (z—0) ~y(z) - &y'(z) (3)
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y(0) = ¢o, y(1) =~
using (3) in (1),we obtain

(€ — da(2))y" (z) + a(x)y' () + b(z)y(z) = f(z) (4)

Equation (4) is a second order singular perturbation problem.

We solve (4) subject to the boundary conditions y(0) = ¢o, y(1) =«
by using fifth order numerical method described by Pramod Chakravarthy et.
al [11].

To describe the fifth order method, we consider the second order differential
equation

y'(@) +p@)y () + a(2)y(z) = r(z) (5)
with boundary conditions y{0) = o and y{1) = 3
The first order linear system corresponding to the above BV P is

Y' = A@@)Y + R(z), a€[0,1] (6)

with the boundary conditions B1Y(0) + B2Y (1) = D, where A, By and B; are
2x2 matrices. Y, R, D are two dimensional vectors.

Now we divide the interval [0, 1] into N equal parts with constant mesh length
H. Let 0 = zg,x1,29,...... zy = 1 be the mesh points. Again we divide each
subinterval [z;, z;+1] into four equal smaller sub intervals. Let ¢1,t3,...... L5
are the grids in the subinterval [z;, z,41] and corresponding values of the vari-
ables and its derivatives are Y1,Y5, Y3, Yy, Vs and Yl' , Yé, Ygl, Y4', Yé.

By considering Taylor’s expansions of Y1, Y5, Y3, Yy, Y5 at the fractional grid
t3 have (Ref. Dianyun Peng [1}), we have

hn+1

5
T = Y ey + 0 =1,234 (@)
J=1

where h = Z#7"* and the coefficients a7 are given by:

-1 2 -5 2 -1
a-}:=g,aémg,aé:—i-,aiz-é,aéz-éz,aé=0

1 -2 2 -1 -5
a‘?_@aa%:'3_7a§_01az:§’a§_E7G§ZT

1 -1 1 -1 1
@ =5 = T = e 5 0

-1 1 1 1 1
&?_57(}’%_5:0’%:0’0’3: Gaag E,alé:z (8)

By taking the Taylor’s series expansions of YI’, Yz', YBI , Y4/, Y5 at the grid point
t3 and substituting (7), we get

5
1 1 /
Y, = h E b;cY} + b’efY3 +O(h5Y3(6)) for k=1,2,4,5 )
=1
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where
bj = —4a; + 12a? — 3243 + 80a? + Sgn(j — 6)
b? = -2a} + 3a§ - 4(13- + 5@? + Sgn(j — 6)
b} = 2a} + 3a2 + 4a? + 5a] + Sgn(j - 6)
b} = 4aj + 1243 + 3205 + 80a} + Sgn(j — 6)

Lz>0
Sgn(z) = { 0.7 <0 }
The variable Y and its derivative Y’ at grids #;, 2, .....t5 subject to equations
Y, = A;Y; + Rj,j =1,2,3,4,5 (10)

where A; and R; are values of A and R at grids t;. Substituting (10) in (9),
we get six linear algebraic equations with respect to five unknown variables
Y1,Y2,Y3,Y,, Ys.
By eliminating Y3, Ya, Yy from the above equations a relation between Y7 and
Y5 can be obtained as follows:
1

%Sm + 5 LYo = Fifori=1,2,...N~1 (11)

where S; and T; are 2x2 matrices and F; is a two dimensional vector.
By assuming
c1 = bzb} — b3b

Wy = ((b3b; — b5b3)I — hbjAs)/ei,

W2 = ((b3b5 — b3b3)I + h(bgb} — b5b3)As) /ey,
W3 = ((b3b; — b3b1)I + hb A1) /ey,

G1 = (bjRy ~ bjRs + (bgb; — b5b3) Rs)/c1,
Wy = ((b3b3 — b1b3)I + hbS A1)/ c2,

Ws = ((b3b§ — b3b3)I + h(bgby — b5b3)As)/c2,
Wo = ((b3b2 ~ b3b5)T — hb3As)/cz,

G3 = (B3R; — byRs + (b3b; — bgb3)Rs)/ca,
Wr = b1 + (b3 — hA2)Ws + b3 W,

Ws = b31 + b3Wis + hbZ Az + (b3] — hAg)Ws,
Wy = b2I + bW + (631 — hA)Wr,

Gs = Ry~ b3R3 — (b2I — hA3)G1 — b2Ga,
Wio = byWa + (b — hAy)Wy + b1,
Wi = b3 + b3W; + hbiAs + (b5 — hAg)Ws,
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Wig = bel + baWy + (b} — hA) W,
G4 = Ry —biR3 — b3Gy — (b} — hA4 )G
We get
S; = Wi Wy — WeWho, T; = Wi Wy — WeWio, F; = GaW1, — WsGy

The formula (11) is the fifth order compact difference scheme of equation (6)
in the i** subinterval. Solving the above system together with the boundary
conditions y(0) = o and y(1) = 3 we get the solution.

3. Numerical Examples

Layer on the left side: If a(x) > M > 0 throughout the interval [0,1], where M
is some positive constant, Then the boundary layer will be in the neighborhood
of 0, i.e., on the left side of the interval [0, 1]. To demonstrate the efficiency of
the method, we consider some numerical experiments.

Example 3.1. Consider the a(z) = 1, b(z) = -1, f(z) =0, ¢(z) = 1 and
v = 1. The singular perturbed delay differential equation is

ey’ (z) + o (z — 8) — y(z) = 0; ze[0,1]
with y(0) =1 and y(1) = 1.

The exact solution is given by y (z) = [(em_1)‘z:vi:f(e};§ml)em2z} Where

my = (—1—+/1+4(e - §))/2(e — ) and mg = (—1+ /1 + (de — §)/2(e — )
The numerical results are given in tables 1(a), 1(b), 1(c), 1(d) and 1(e) for
different choices € and 4.

Example 3.2. Now consider an example of the BVP with variable coefficients.
Consider equation (1) with a(z) = e7%%% b(z) = -1, f(z) =0, #(z) = 1 and
v=1

The variable coefficient singular perturbed delay differential equation is

ey’ (z) +e %%y (z — &) — y(x) = 0; z€[0,1] with y(0) = 1 and y(1) = 1.

for which exact solution is not known.

The numerical results are given in tables 2(a), 2(b) for different values of
€ and 4.

Remark. We have considered numerical results for several test examples to
show the effect of small shifts on boundary layer solution of the problem. From
the numerical experiments presented here, we observe as § increases, the thick-
ness of the boundary layer decreases and maximum error decreases as the grid
size & decreases, which shows the convergence to the computed solution.

Layer on the right side: If a(z) < M < 0 throughout the interval [0,1], then
the boundary layer will be in the neighborhood of 1, i.e., on the right side of the
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interval [0, 1]. To demonstrate the efficiency of the method, we consider some
numerical experiments.

Example 3.3. Consider equation (1) with a(z) = —1, b(z) = ~1, f(z) =0,
#(z) =1 and y = —1. The singular perturbed delay differential equation is

ey’'(z) ~ ¢ (z — 8) — y(z) = 0; z€[0,1]
with y(0) =1 and y(1) = -1.

(e™241)e™1% —(14e™1)e™2%]
@ 7=e™)

my = (1~ +/1+4+6))/2(e+68) and mg = (1+ /1 + (4e+6)/2(¢ + 5)
The numerical results are given in tables 3(a), 3(b), 3(c) and 3(d) for different
choices of £ and 6.

The exact solution is given by y (z) = { where

Example 3.4. Now we consider an example of the BVP with variable coeffi-
cients. Consider equation (1) with a(z) = —e€®, b(z) = —z, f(z) =0, ¢(z) =1
and y = 1.

The variable coeflicient singularly perturbed delay differential equation is

ey’(z) - e®yY (z — 8) — zy(z) = 0; z€[0,1] with y(0) = 0, and y(1) = 1, for
which exact solution is not known.

The numerical results are given in table 4(a), 4(b) for different choices of
¢ and 6.

Remark. We have considered several numerical experiments to show the effect
of small shifts on boundary layer solution. From the numerical experiments
presented here, we observe that as § increases, the thickness of the right boundary
layer increases. As the grid size h decreases, the maximum error decreases, which
shows the convergence to the computed solution.

Table 1(a) Numerical Results of Example 3.1, ¢ = 0.1, == 0.01 and N=100

X Approximate solution Exact solution

0 1.000000060000000 1.000000000000000
0.01 0.93533760733629 0.93533760733569
0.02 0.87845885453881 0.87845885453774
0.05 0.74622776641336 0.74622776641149
0.10 0.61656559127633 0.61656559127428
0.20 0.53207801010147 0.53207801010024
0.30 0.54028252516007 0.54028252515951
0.40 0.579565600542291 0.579556600542269
0.50 0.63171565754760 0.631716656754752
0.60 0.69164811960337 0.69164811960334
0.70 0.75819626296802 0.75819626296801
0.80 0.83142699534590 0.83142699534590
0.90 0.91181469770927 0.91181469770927
1.00 1.00000000000000 1.00000000000000

Least square error = 8.179682163245023e-012
Maximum error = 2.088107464714994e-012




A fifth order numerical method for singularly Perturbed differential-difference equations

4. Conclusion

447

We have described a fifth order numerical method for solving boundary value
problems for singularly perturbed differential-difference equation with small shifts.
Here we have discussed both the cases, when boundary layer is on the left side
and when boundary layer is on the right side of the underlying interval. From the
numerical experiments considered in the paper, we observe that the small shift
affects both the boundary layer solutions in similar fashion but reversely, i.e., as
0 increases the thickness of the left boundary layer decreases while that of the
right boundary layer increases. This method does not depend on the asymptotic
expansion as well as on the matching of coefficients. Thus we have devised an al-
ternative technique of solving boundary value problems for singularly perturbed
delay differential equations, which is easily implemented on computer and is also

practical.

Table 1(b) Numerical Results of Example 3.1, € = 0.1,§ = 0.08 and N=100

X

Approximate Solution

Exact solution

0

1.000000000000000

1.000000000000000

0.01

0.75408821248241

0.75408820194106

0.02

0.60790350674732

0.60790349408482

0.05

0.44272012697889

0.44272012012022

0.10

0.41748799161620

0.41748799054409

0.20

0.45632108431666

0.45632108430355

0.30

0.50331795240175

0.50331795240163

0.40

0.55518312397366

0.5655618312397366

0.50

0.61239299322917

0.61239299322917

0.60

0.67549816005444

0.67549816005444

0.70

0.74510611533090

0.74510611533090

0.80

0.82188695089678

0.82188695089678

0.90

0.90657980944690

0.90657980944690

1.00

1.00000000000000

1.00000000006000

Least square error = 2.405803586280801e-008

Maximum error = 1.266250471143593e-008

Table 1(c) Numerical Results of Example 3.1, ¢ = 0.01,6 = 0.001 and N=100

x Approximate Solution Exact solution

0 1.000000600000000 1.00000000000000
0.01 0.57981739052165 0.57981589273995
0.02 0.44538818375023 0.44538720735391
0.05 0.39231676539590 0.39231668086627
0.10 0.40982631569573 0.40982631497375
0.20 0.45251844452165 0.45251844452164
0.30 0.49966824483544 0.49966824483544
0.40 0.55173078132630 0.55173078132630
0.50 0.60921793251678 0.60921793251678
0.60 0.67269491183332 0.67269491183332
0.70 0.74278582466705 0.74278582466705
0.80 0.82017980457538 0.82017980457538
0.90 0.90563778884021 0.90563778884021
1.00 1.06000000000600 1.000666000600000

Least square error = 1.864418701257692e-006

Maximum error = 1.497781700332546e-006
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Table 1{(d) Numerical Results of Example 3.1, ¢ = 0.01, 4 = 0.008 and N=100

X | Approximate Solution Exact solution

0 1.60000000000000 1.00000000000000
0.01 0.37947809549342 0.37652221318501
0.02 0.37612587063888 0.37607259487377
0.05 0.38747359985959 0.38747359974888
0.10 0.40729922618261 0.40729922618262
0.20 0.45004559992807 0.45004559992808
0.30 0.49727823917792 0.49727823917793
0.40 0.54946798102107 0.54946798102108
0.50 0.60713507726878 0.60713507726879
0.60 0.67085438056860 0.67085438056860
0.70 0.74126107480500 0.74126107480501
0.80 0.81905700691014 0.81905700691014
0.90 0.90501768320301 0.90501768320301
1.00 1.00000000000000 1.00000000000000

Least square error = 2.956362472803127e-003
Maximum error = 2.955882308403768¢-003

Table 1(e) Numerical Results of Example 3.1, ¢ = 0.01, § = 0.008 and N=1000

X Approximate Solution Exact solution

0 1.000000000000000 | 1.000000000600000
0.001 0.75155464424333 0.75155463473756
0.002 0.60116064093887 0.60116062941928
0.005 0.42202642323194 0.42202641682515
0.010 0.37652221423168 0.37652221423168
0.100 0.40729922618275 0.40720922618262
0.200 0.45004559992821 0.45004559992808
0.300 0.49727823917805 0.49727823917793
0.400 0.54946798102119 0.54946798102108
0.500 0.60713507726889 0.60713507726879
0.600 0.67085438056869 0.67085438056860
0.700 0.74126107480509 0.74126107480501
0.800 0.81905700691020 0.81905700691014
0.900 0.90501768320304 0.90501768320301
1.000 1.00000000000000 1.00000000000000

Least square error = 2.207710596547204¢-008
Maximum error = 1.151959416745285¢-008
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Table 2{a) Numerical Results of Example 3.2, ¢ = 0.1, and N=100

X

Approximate
Solution;§ == 0

Approximate
Solution;d§ = 0.03

Approximate
Solution;§ = 0.08

0

1.00000000000000

1.00000000000000

1.00000000000000

4.01

0.93704982052527

0.91161146840726

0.73708838608371

0.02

0.88095406306475

0.83612445319956

0.57861648271836

0.05

0.746950959132383

0.66969757495947

0.38827922023551

.10

0.60641129699105

0.52137367952998

0.34308121177832

0.20

0.49466658403196

0.43747849380685

0.37068595105221

0.30

0.48262803914204

0.44854243455544

0.41266453862454

0.40

0.51037065418540

0.48844568405741

0.46175103340312

0.50

0.55789825916983

0.54206594598835

0.51904660508508

0.60

0.61893964968797

0.60656078885841

0.58616261868148

0.70

0.69227494576921

0.68247497103046

0.66508326507048

0.80

0.77878226043080

0.77158045051582

0.75824503391702

0.90

0.88043494198740

0.87636979723337

0.86864839173032

[ 1.00

1.0000600000G0000

1.00006000600000

1.000060006000000

Table 2(b) Numerical Results of Example 3.2, £ = 0.01, and N=1000

Table 3(a) Numerical Results of Example 3.3, ¢ = 0.01,6 = 0.007 and N=100

X Approximate Approximate
solution; § =0 solution; § = 0.008
0 1.00000000000000 | 1.060000000000000
0.001 | 0.93160114087772 | 0.71659489436671
0.002 | 0.86979688313026 | 0.54477707837492
0.005 | 0.71789433033423 | 0.33880072595677
0.010 | 0.54799743765769 | 0.28470464470229
0.050 | 0.306100727254446 | 0.29098707906127
0.100 | 0.31154907887158 | (.30643411316279
0.200 | 0.34635378201876 | 0.34115441548927
0.300 | 0.38713375183003 | 0.38185994187319
0.400 | 0.43511323814654 | 0.42984114084066
0.500 | 0.45187582752134 | (.48671931566182
0.660 | 0.55941806174273 | 0.55454434933653
0.700 | 0.64027320415474 | 0.63592499725349
0.800 | 0.73767678409435 | 0.73420381171598
0.900 | 0.85578956287997 | 0.85369367409840
1.000 ] 1.006000000000000 | 1.00000000000000

X

Approximate Solution

Exact solution

0

1.00000000000000

1.00008000000000

0.10

0.90632668834811

0.90632668834811

0.20

0.82142806601206

0.82142806601206

0.30

0.74448217878491

0.74448217878490

0.40

0.67474406763231

0.67474406763231

0.50

0.61153855629959

0.61153855629958

0.60

0.55425371447229

0.55425371447229

0.70

0.50233491142056

0.50233491142061

0.80

0.45527078268309

0.45527078269823

0.90

0.40915991523934

0.40915991823444

0.97

0.15674311908056

0.165674317819657

0.98

-0.03402568555112

-0.03402561387860

0.99

-0.37783620393470

-0.37783613876263

1.00

-1.00000600000000

-1.00000000000000

Least square error = 2.62464711001043%-009

Maximum error = 1,042466474254766e-009
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Table 3(b) Numerical Results of Example 3.3, ¢ = 0.01,4 = 0.025 and N=100

X Approximate Solution Exact solution

0 1.00000000000000 1.00000000000000
0.10 0.90780519660681 0.90780519660681
0.20 0.82411027491793 0.82411027491793
0.30 0.74813158877369 0.74813158877369
0.40 0.67915771762727 0.67915771762727
0.50 0.61654239883634 0.61654239883636
0.80 0.45750360389700 0.45750360394282
0.90 0.34677344960943 0.34677345004892
0.95 0.08382770350674 0.08382770446910
0.96 -0.02830692371227 -0.02830692267780
0.97 -0.17761947652789 -0.17761947548542
0.98 -0.37689906062553 -0.37689905969172
0.99 -0.64332958128641 -0.64332958065906
1.00 -1.00000000060000 -1.00000000000000

Least square error = 2.624647110010439-009

Maximum error = 1.042466474254766e-009

Table 3(c) Numerical Results of Example 3.3, € = 0.001,§ = 0.0007 and N=1000

X Approximate Solution Exact solution

0 1.006600000000060 1.0000000000000
0.100 (.90499073260046 0.90499073260046
0.200 0.81900822609272 0.81900822609272
0.300 0.74119485453746 0.74119485453745
0.500 0.60704468300378 0.60704468300376
0.700 0.49717458898595 0.49717458898593
0.800 0.44993839551673 0.44993839551671
0.900 0.40719007818376 0.407138007818374
0.990 0.36842267600774 0.36842267894261
0.995 0.20844515309722 0.29844518102688
0.996 0.24036655498587 0.24036659526283
0.997 0.13587087236771 0.13597072682033
0.998 -0.06191733207893 -0.05191726664118
0.999 -0.39030005134213 -0.39030899236287
1.000 -1.06000000000000 -1.60060000000000

Least square error = 1.171028077548662¢-007

Maximum error = 6.543775547818154e-008

Table 3(d) Numerical Results of Example 3.3, ¢ = 0.001,6 = 0.0025 and N=1000

X Approximate Solution Exact solution

0 1.00000000000000 1.0000000000000
0.100 (3.90515196815104 0.90515196815106
0.200 0.81930008544771 0.81930008544772
0.300 0.74159108484932 0.74159108484932
0.500 0.60758563918431 0.60758563918432
0.700 0.497794966100561 0.49779496610052
0.800 (.45058009330156 0.45058009330157
0.900 0.40784345826111 0.40784345826111
0.990 0.29500272894226 0.29500272932812
0.995 0.04451443209256 0.044514432090164
0.996 -0.06426244481058 -0.06426244394840
0.997 -0.20903441451370 -0.20903441365235
0.998 -0.40175337222480 -0,40175337145993
0.999 -0.65833970770268 -0.65833970719326
1.000 ~1.00000000000000 -1.0000000600G000
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Least square error = 2.209589813446237e-009
Maximum error = 8.621774266748261e-010

Table 4(a) Numerical Results of Example 3.4, £ = 0.1, and N=100

x Approximate Approximate
solution; § = 0 solution; § = 0.008
0 1.0000000000000C | 1.000000060000000
0.01 | 0.99920314305062 | 0.99881185785093
0.10 | 0.988882609558388 | 0.98549173811356
0.30 | 0.95005036233944 | 0.94335642465092
0.50 | 0.89782975581026 | 0.89361471853488
0.70 | 0.84043249907747 | 0.85353050475006
0.90 | 0.80212705329284 | 0.88363945461353
0.91 | 0.80466506435304 | 0.89026779259037
0.92 | 0.80875047942108 | 0.89775369919748
0.93 | 0.81484740738283 | (.80617743780868
0.94 | 0.82356629236103 | 0.91562707688116
0.95 | 0.83571212026914 | 0.92619927507559
0.96 | 0,85234916512936 | 0.93800014727553
0.87 | 0.87488817396376 | 0.95114622003515
0.98 | 0.90520407196102 | 0.96576548590128
0.99 | 0.94579528936361 | 0.98199856707403
| 1.00 | 1.00000000000000 | 1.000000060000000

Table 4(b) Numerical Results of Example

3.4, £ = 0.01, and N=1000

x Approximate Approximate

solution; § =0 solution; § = 0.008

0 1.00000000000000 | 1.00000000000000
0.001 | D.99998980890339 [ 0.999982335667297
0.010 | 0.99985473614977 | 0.99978071478265
0.100 | 0.99450235296924 | 0.99383396557864
0.300 | 0.96196060389908 | 0.96041896366450
0.500 | 0.91166082582984 | 0.90976066283490
0.700 | 0.85367025803677 | 0.85176071685649
0.900 | 0.79462166136873 | 0.79295425247490
0.990 | 0.78457431560877 | 0.86737397649755
0.991 | 0.78914581433962 | 0.87602334229006
0.992 | 0.79522047032765 | 0.88547237933664
0.993 | 0.80326596422511 | 0.89579296316360
0.995 | 0.82791720553639 | 0.91936929365837
0,996 | 0.84638762196155 | 0.93280362821805
0.997 | 0.87069816360978 | 0.94746802588880
0.998 | 0.90267632481818 | 0.96347323088163
0.999 | 0.94472419901100 | (.98093999780019
1.000 | 1.00000000000000 [ 1.00000000000000

120(1995), 253-259.

REFERENCES

1. Dianyun Peng , High order Numerical method for two point boundary value problems, Vol.

2. M.K.Kadalbajoo and K.K.Sharma, Numerical Analysis of boundary value Problems for

singularly perturbed diffrential-difference equations with small shifts of mized type, Journal

of Optimization theory and Applications, Vol. 115(2002), No.1, 145-163.



452

3.

10.

11.

12.

P.Pramod Chakravarthy, K.Phaneendra, and Y.N.Reddy

M.K.Kadalbajoo and K.K.Sharma, Numerical Analysis of singularly perturbed delay
diffrential equations with layer behoviour, Applied Mathematics and Computation, Vol.
157(2004), 11-28.

. M.K.Kadalbajoo and K.K.Sharma, Numerical Treatment of Mathematical Model of a neu-

ronal variobility, Journal of Mathematical Analysis and Applications, Vol. 307(2005), 606-
627.

. Kailash C. Patidar and Kapil K. Sharma, ¢-Unifermly convergent non-standard finite

difference methods for Singularly Perturbed differential difference egquations with small
delay, Applied Mathematics and Computation, Vol. 175(2008), issue 1, 864-890.

. C.G.Lange and R.M.Miura, Singular Perturbation Analysis of boundary-value problems

for differential difference equations.V. Small shifts with layer behaviour, SIAM Journal
on Applied Mathematics, Vol. 54(1994), 249-272.

. C.G.Lange and R.M.Miura, Singular Perturbation Analysis of boundary-value problems for

differential difference eguations, SIAM Journal on Applied Mathematics, Vol. 42(1982),
502-531.

. C.G.Lange and R.M.Miura, Singular Perturbation Analysis of boundary-vaiue problems

for differential difference equations II. Rapid oscillations and resonances, SIAM Journal
on Applied Mathematics, Vol. 45(1985), 687-707.

. C.G.Lange and R.M.Miura, Singular Perturbation Analysis of boundary-value problems

for differential difference equations II1. Turning point problems, SIAM Journal on Applied
Mathematics, Vol. 45(1985), 708-734.

C.G.Lange and R.M.Miura, Singular Perturbation Analysis of boundary-value problems
Jor differenticl difference equations VI. Small shifts with rapid oscillations, SIAM Journal
on Applied Mathematics, Vol. 54(1994), 273-283.

P. Pramod Chakravarthy, K. Phaneendra and Y.N. Reddy,A Fifth Order Method for Sin-
gular Perturbation Problems, Journal of Applied Mathematics & Informatics, to appear.
R.B.Stein, A theoretical analysis of neuronal variability, Biophysical Journal, Vol. 5(1965),
173-194.

Pramod Chakravarthy received his Ph.D. at National Institute of Technology, Waran-
gal (India) in 2004. His research interests are Numerical Analysis, Singular Perturbation
Problems. He is working in the Department of Mathematics, Visvesvaraya National Insti-
tute of Technology, Nagpur, Maharastra-440011, India.

Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur,
Maharastra-440011, India.
e-mail s pramodpodila@yahoo.co.in

K. Phaneendra is persuing Ph.D. in Numerical Analysis in National Insitute of Tech-
nology, Warangal (India). He is working in the Department of Mathematics, Kakatiya
Institute of Technology & Science, Warangal, Andhrapradesh-506015, India.
e-mail:kollo jupha.neendra@yahoo .co.in

Y.N. Reddy is Professor & Head of the Deaprtment of Mathematics at National Institute
of Technology, Warangal, Andhrapradesh-506004, India. His area of research is Numerical
Analysis, Singular Perturbation Problems and Singular Boundary Value Problems.
e-mail rynreddy@nitw.ac.in



