• Title/Summary/Keyword: peroxide reductase

Search Result 100, Processing Time 0.024 seconds

Cirsium japonicum var. maackii inhibits hydrogen peroxide-induced oxidative stress in SH-SY5Y cells

  • Kim, Min Jeong;Lee, Sanghyun;Kim, Hyun Young;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.119-131
    • /
    • 2021
  • Over-produced reactive oxygen species (ROS) exert oxidative damage on lipids, proteins, and DNA in the human body, which leads to the onset of neurodegenerative diseases such as Alzheimer's disease (AD). In this study, we explored the cellular antioxidant effect of Cirsium japonicum var. maackii (CJM) against hydrogen peroxide (H2O2)-induced oxidative stress in neuronal cells. The antioxidant activity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 2',7'-dichlorofluorescin diacetate and nitric oxide (NO) assays, and the molecular mechanisms were examined by Western blot analysis. H2O2 treatment of SH-SY5Y cells decreased cell viability and increased ROS and NO production compared to H2O2-untreated cells. However, CJM increased cell viability and decreased ROS and NO accumulation in the H2O2-treated SH-SY5Y cells compared to H2O2-treated control cells. Especially, the EtOAc fraction from CJM showed the strongest antioxidant effect compared with the other extracts and fractions. Therefore, we further examined the CJM mechanism against oxidative stress using the EtOAc fraction from CJM. The EtOAc fraction up-regulated the expressions of heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and thioredoxin reductase 1. These results indicate that CJM promotes the activation of antioxidative enzymes, which eliminate ROS and NO, and further leads to an increase in the cell viability. Taken together, our results show that CJM exhibited an antioxidant activity in H2O2-treated SH-SY5Y cells, and it could be a novel antioxidant agent for the prevention or treatment of neurodegenerative disease such as AD.

Acne-remedy Effects of Extract Mixture of Pulsatillae Radix and Cicadidae Periostracum (백두옹(白頭翁) 및 선퇴(蟬退) 추출 혼합물의 분자 개선 효과)

  • Lim, Jong-Pil
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.653-660
    • /
    • 2010
  • Pulsatillae Radix and Cicadidae Periostracum have long been used for treatment of injuries, inflammations or itchiness in Korea. This study was carried out to examine the acne-remedy effects of the mixture made with equal parts of Pulsatillae Radix extract and Cicadidae Periostracum extract (PRCP) compared with 2%-benzoyl peroxide (Standard) used commercially as anti-acne. The results showed the mixture (PRCP) was more effective than each crude drug extract. The 10%-PRCP showed significant antimicrobial activity against Propionibacterium acnes, the major cause of acne, and also showed significant inhibition from type 1 $5{\alpha}$-reductase ($5{\alpha}R$), another cause of acne, And the cream made with PRCP demonstrated anti-sebum and acne-improvement effects on examinee's facial skin.

Oxidative Stress Resulting from Environmental Pollutions and Defence Mechanisms in Plants (환경오염(環境汚染)에 의한 산화(酸化)스트레스와 식물체(植物體)의 방어기작(防禦機作))

  • Shim, Sang-In;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.264-280
    • /
    • 1993
  • The environmental pollutions were a serious problem in Korea recently. So many researcher have studied the effect of environmental pollution on plants and agro-ecosystem, but the basic mechanisms of environmental stresses were various. One of the important mechanisms was oxidative stress caused by active toxic oxygen. The toxic oxygen was generated by several stresses, abnormal temperature, many xenobiotics, air pollutants, water stress, fugal toxin, etc. In the species of toxic oxygen which is primary inducer of oxidative stresses, superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen were representative species. The scavenging systems were divided into two groups. One was nonenzymatic system and the other enzymatic system. Antioxidants such as glutathione, ascorbic acid, and carotenoid, have the primary function in defense mechanisms. Enzymatic system divided into two groups; First, direct interaction with toxic oxygen(eg. superoxide dismutase). Second, participation in redox reaction to maintain the active antioxidant levels(eg. glutathione reductase, ascorbate peroxidase, etc.).

  • PDF

Effects of the mixture of fenugreek seeds and Lespedeza cuneata extracts on testosterone synthesis in TM3 cells oxidative stressed with H2O2 (호로파와 야관문 복합추출물이 과산화수소로 산화적 스트레스가 가해진 TM3 세포의 테스토스테론 합성에 미치는 영향)

  • Lee, Kyeong Soo;Lee, Eun Kyoung;Seo, Yoonhee;Choe, Soo Young
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • This study investigated the effects of a mixture of fenugreek seeds and Lespedeza cuneata extracts on testosterone synthesis in TM3 cells that were oxidatively stressed with $H_2O_2$. In order to oxidatively stress TM3 cells, the cells were treated with $50{\mu}M$ hydrogen peroxide for 4 hr in serum-free media. Yagwanmun-horopa mixture (YHM) showed neither cytotoxicity nor increment of cell proliferation in the oxidatively stressed TM3 cells in any concentration. When the cells were treated with hydrogen peroxide, testosterone levels decreased, but the testosterone level was returned to that of the control level in the presence of YHM. In order to find out the reasons for the increase of testosterone, the expression of the genes involved in the synthesis or disintegration of testosterone. On the other hand, the levels of $3{\beta}$-HSD4 and 17, 20-desmorase, which are involved in testosterone synthesis, were decreased through the use of hydrogen peroxide and were recovered through YHM treatment. Aromatase and $5{\alpha}$-reductase2, which convert testosterone to estradiol and dihydrotestosterone, respectively, were increased through the use of hydrogen peroxide, and were returned to control level through YHM treatment. These results suggest that YHM does not affect TM3 cell proliferation. However, YHM increases the expression of testosterone-synthesizing enzyme, which was decreased through oxidative stress, and decreases the expression of testosterone- converting enzyme, which was increased through oxidative stress. Therefore, it is reasonable that YHM has strong recovery activity on testosterone to normal level, even in the oxidatively stressed TM3 cells which mimics the andropause state.

A unique thioredoxin reductase plays defensive roles against oxidative, nitrosative and nutritional stresses in Schizosaccharomyces pombe (Schizosaccharomyces pombe의 유일한 치오레독신 환원효소의 산화적, 일산화질소 및 영양 스트레스에 대한 방어적 역할)

  • Ji, Dam-Jung;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • A unique Schizosaccharomyces pombe $TrxR^+$ gene encoding thioredoxin reductase (TrxR) was found to be positively regulated by stress-inducing agents through the stress-responsive transcription factor Pap1. In the present study, the protective roles of S. pombe TrxR were evaluated using the TrxR-overexpressing recombinant plasmid pHSM10. In the presence of hydrogen peroxide ($H_2O_2$) and superoxide anion-generating menadione (MD), S. pombe TrxR increased cellular growth and the total glutathione (GSH) level, while it reduced levels of intracellular reactive oxygen species (ROS). The nitric oxide (NO) levels of the TrxR-overexpressing cells, in the presence of $H_2O_2$ and MD, were maintained to be similar to those of the corresponding non-treated cells. Although S. pombe TrxR was able to scavenge NO generated by sodium nitroprusside (SNP), it had no significant modulating effects on cellular growth, ROS levels, or the total GSH level of SNP-exposed yeast cells, compared with the differences in those of the two non-treated cell cultures. TrxR increased the cellular growth and total GSH level, which were diminished by nitrogen starvation. It also scavenged ROS and NO produced during nitrogen starvation. Taken together, the S. pombe TrxR protects against oxidative, nitrosative, and nutritional stresses.

Effects of Chronic Alcohol Feeding and 2-Acetylaminofluorene Treatment on Microsomal Cytochrome P-450 and Glutathione Dependent Enzymes Activities in Rat Liver (만성 알코올 섭취시 2-Acetylaminofluorene 투여가 흰쥐간 Cytochrome P-450 및 Glutathione 이용 효소계 활성에 미치는 영향)

  • 김정희;최옥희;윤혜진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.859-866
    • /
    • 1995
  • This study was done to investigate the effects of chronic ethanol feeding on hepatic microsomal cytochrome system, lipid peroxidation and peroxide metabolizing enzyme activities in 2-acetylaminofluorene(2-AAF) treated rats. Male Sprague-Dawley rats, weighing 120~125g, were pair-fed liquid diets containing 35% of total calories either as ethanol or isocaloric carbohydrates for 6 weeks. After 4 weeks of experimental diet feeding, 2-AAF(100mg/kg body weight) was injected twice a week intraperitoneally. Both weight and percent liver weight per body weight were significantly changed by ethanol feeding. Hepatic microsomal lipid peroxide value and the activities of glutathione(GSH) peroxidase and GSH reductase were not changed by either ethanol or 2-AAF treatment. However the analysis of cytochrome systems showed that both ethanol and 2-AAF increased cytochrome P-450 and bs contents although cytochrome P-450 content was moe affected by 2-AAF while cytochrome b5 content by ethanol. Cytosolic GSH S-transferase activity, which is often elevated during chemical carcinogenesis, also significantly increased by either ethanol feeding or 2-AAF treatment. Overall values for the cytochrome contents and GSH S-transferase activities were highest in 2-AAF treated rats fed ethanol. These results might support the hypothesis that the increase in liver cancer risk associated with chronic ethanol consumption might be due to, at least in part, enhancement of carcinogen bioactivation by ethanol.

  • PDF

Effects of the Extract in Streptozotocin-induced Diabetic Rats (고혈당 흰쥐에서 제조의 혈당 조절과 항산화 작용에 관한 연구)

  • Lee Cheol-Wooug;Shin Hyeon-Cheol;Jeong Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.27 no.1 s.65
    • /
    • pp.91-103
    • /
    • 2006
  • Objectives : Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many effects have been fried to regulate oxygen free radicals for treating diabetes and its complications. Because Holotrichia has been known to be effective for the treatment of diabetes, the methanol extract of Holotrichia was tested for its effectiveness in reducing the oxidative stress induced by streptozotocin. Methods : Holotrichia was washed, dried in the shade and crushed. The crushed Holotrichia was extracted 3 times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ for 24h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 17 g. Holotrichia extract was oral-administed to the diabetic rats induced by streptozotocin 50 mg per 1 kg of body weight for 20 days. The efficacy of the Holotrichia extract was examined with regard to the enzymatic pathways involved in the oxygen free radical production and the glutathione balance. Results : The Effects of the methanol extract of Holotrichia in streptozotocin-induced diabolic rats with regards to body weight, blood glucose level, hepatic lipid peroxide level, hepatic superoxide anion radical content. hepatic xanthine oxidase activity and type conversion rate, hepatic glutathione level, hepatic aldose reductase activity, and hepatic sorbitol dehydrogenase activity were shown to be good enough to cure and prevent the diabetes and its complications. Conclusions : These results indicated that Holotrichia might reduce the oxidative stress in the tissues and organs by regulating the production of oxygen free radicals. Especially, Holotrichia might prevent and cure the diabetes and its complications by reducing the oxidative stress in the ${\beta}$-cells of pancreas. Some suggestions on biophoton experiments were made.

  • PDF

Effects of the Mori folium Extract in Streptozotocin-Induced Diabetic Rats (고혈당 흰쥐에서 상엽(桑葉)의 혈당 조절과 항산화 작용에 관한 연구)

  • Kim, Oh-Gon;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.811-821
    • /
    • 2006
  • Objectives : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many methods have been tried to regulate oxygen free radicals for treating diabetes and its complications. Because Mori foliumhas been known to be effective for the treatment of diabetes, the methanol extract of Mori folium was tested for its effectiveness in reducing the oxidative stress induced by streptozotocin. Methods : The crushed Mori folium was extracted 3 times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ or 24 h. The extract was filtered and evaporated under reduced pressure using a rotary evaporator to yield 11.7 g. Mori folium extract was oral-administered to diabetic rats induced by streptozotocin at 100 mg per 1 kg of body weight for 20 days. The efficacy of the Mori foliumextract was examined with regard to the enzymatic pathways involved in oxygen free radical production and glutathione balance. Results : The effects of the Mori foliumin streptozotocin-induced diabetic rats with regards to body weight, blood glucose and insulin level, hepatic lipid peroxide level, hepatic glutathione level, hepatic glutathione S-transferase and glutathione peroxidase level, hepatic aldose reductase activity, and hepatic sorbitol dehydrogenase activity were shown to be good enough to cure and prevent diabetes and its complications. Conclusions : These results indicated that Mori folium might reduce oxidative stress in tissues and organs by regulating the production of oxygen free radicals. Especially Mori folium might prevent and cure diabetes and its complications by reducing oxidative stress in the ${\beta}-cells$ of the pancreas.

  • PDF

Evaluation of a Schzandrin C Derivative DDB-mixed Preparation(DWP-04) on Acetaminophen Detoxification Enzyme System in the Animal Model (오미자 Schizandrin C 유도체 DDB 복합물 DWP-04가 Acetaminophen 해독계에 미치는 영향)

  • Park, Hee-Juhn;Lee, Myeong-Seon;Chi, Sang-Cheol;Lee, Kyung-Tae;Shin, Young-Ho;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.81-87
    • /
    • 2005
  • The effects of the DWP-04 [DDB:selenium yeast:glutathione (31.1 : 6.8 : 62.1 (w/w%)] on acetaminophen detoxification enzyme system were studied in rats. Treatment with DWP-04 was prevented againt acetaminophen-induiced hepatotoxicity in rat as evidenced by the decreased formation of lipid peroxide. Effect of DWP-04 on the activities of free radical-generating enzymes, free radical scavenging enzymes and glutathione-related enzymes as well as detoxification mechanism of DWP-04 against acetaminophen-treated was investigated in rat. Activities of cytochrome p450, cytochrome b5, aminopyrine demethylase and aniline hydroxylase as free radical-generating enzymes activities were decreased by the treatment with DWP-04 against acetaminophen treated. Although acetaminophen-induced hepatotoxicity results in the significantly decrease in the level of hepatic glutathione and activities of glutathine S-transferase, quinone reductase, glutathione reductase and ${\gamma}-glutamyl-$cysteine synthetase, these decreasing effects were markedly lowered in the DWP-04-treated rat. Therefore, it was concluded that the mechanism for the observed preventive effect of DWP-04 against the acetaminophen-induced hepatotoxicity was associated with the decreased activities in the free radical-generating enzyme system.

Antioxidative Effects of Korean Red Ginseng Extracts on the Glutathione and Lipid Peroxidation in the Liver of Mouse Treated with Paraquat (홍삼추출물 투여 후 Paraquat가 투여된 생쥐간에서 Glutathione과 Lipid Peroxidation에 미치는 항산화 효과)

  • 이화재
    • Biomedical Science Letters
    • /
    • v.6 no.1
    • /
    • pp.45-53
    • /
    • 2000
  • The anti-oxidative effects of Korean red ginseng extracts (total saponine, water extracts, alcohol extracts, lipophilic extracts), which were administered with the concentration of 200 mg/kg BW, were investigated after the injection of paraquat (1,1-dimethyl-4,4-bipyrimidinium dichloride: PQ) with dosage of 100 mg/kg BW on the peritoneal cavity to 6 weeks of 23~26 gm ICR male mice. The accumulation of hydrogen peroxide ($H_2O$$_2$) on the liver of mouse was lowered only in alcohol extract-treated group (p<0.05). The activity of glutathione peroxidase increased in the mouse treated with lipophilic ginseng extracts. And GSSG level was lowered in all groups, and this might be due to the paraquat ions that might prevent the reaction of GSSG into GSH. But we cannot find any relation between glutathione oxide-reductase activity on Korean ginseng extracts. Finally, the lipid peroxidation (MDA) level was lowest (p<0.01) in the group of mouse treated with water extracts of ginseng.

  • PDF