References
- Bouche, M.L., Habets, F., Biagianti-Risbourg, S., and Vernet, G. 2000. Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol. Environ. Saf. 46, 246-251. https://doi.org/10.1006/eesa.2000.1919
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Cai, W., Zhang, L., Song, Y., Wang, B., Zhang, B., Cui, X., Hu, G., Liu, Y., Wu, J., and Fang, J. 2012. Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic. Biol. Med. 52, 257-265. https://doi.org/10.1016/j.freeradbiomed.2011.10.447
-
Calvo, I.A., Garcia, P., Ayte, J., and Hidalgo, E. 2012. The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to
$H_2O_2$ . Nucleic Acids Res. 40, 4816-4824. https://doi.org/10.1093/nar/gks141 - Carmel-Harel, O., Stearman, R., Gasch, A.P., Botstein, D., Brown, P.O., and Stortz, G. 2001. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol. 39, 595-605. https://doi.org/10.1046/j.1365-2958.2001.02255.x
- Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V., and Dawes, I.W. 2005. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 1215-1228. https://doi.org/10.1016/j.femsyr.2005.06.001
- Ejima, K., Nanri, H., Toki, N., Kashimura, M., and Ikeda, M. 1999. Localization of thioredoxin reductase and thioredoxin in normal placenta and their protective effect against oxidative stress. Placenta 20, 95-101. https://doi.org/10.1053/plac.1998.0338
- Fahey, R.C. 2001. Novel thiols of prokaryotes. Annu. Rev. Microbiol. 55, 333-356. https://doi.org/10.1146/annurev.micro.55.1.333
- Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241-4257. https://doi.org/10.1091/mbc.11.12.4241
- Halliwell, B. and Gutteridge, J.M.C. 1999. Free Radicals in Biology and Medicine, 3rd ed. Oxford Science Publications, Oxford, UK.
- Hiesinger, M., Roth, S., Meissner, E., and Schüller, H.J. 2001. Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon source-responsive elements. Curr. Genet. 39, 68-76. https://doi.org/10.1007/s002940000182
- Holmgren, A. 1985. Thioredoxin. Annu. Rev. Biochem. 54, 237-271. https://doi.org/10.1146/annurev.bi.54.070185.001321
- Hong, S.M., Lim, H.W., Kim, I.H., Kim, K., Park, E.H., and Lim, C.J. 2004. Stress-dependent regulation of the gene encoding thioredoxin reductase from the fission yeast. FEMS Microbiol. Lett. 234, 379-385. https://doi.org/10.1111/j.1574-6968.2004.tb09557.x
- Kang, M.H., Jung, H.J., Hyun, D.H., Park, E.H., and Lim, C.J. 2011. Protective roles and Pap1-dependent regulation of the Schizosaccharomyces pombe spy1 gene under nitrosative and nutritional stresses. Mol. Biol. Rep. 38, 1129-1136. https://doi.org/10.1007/s11033-010-0210-3
- Kang, G.Y., Park, E.H., Kim, K., and Lim, C.J. 2009. Overexpression of bacterioferritin comigratory protein (Bcp) enhances viability and reduced glutathione level in the fission yeast under stress. J. Microbiol. 47, 60-67. https://doi.org/10.1007/s12275-008-0077-3
- Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. https://doi.org/10.3109/19396368.2012.681420
-
Kim, H.J., Jung, H.Y., and Lim, C.J. 2008. The
$pap1^+$ gene of fission yeast is transcriptionally regulated by nitrosative and nutritional stress. FEMS Microbiol. Lett. 280, 176-181. https://doi.org/10.1111/j.1574-6968.2007.01056.x - Kohda, T.A., Tanaka, K., Konomi, M., Sato, M., Osumi, M., and Yamamoto, M. 2007. Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells 12, 155-170. https://doi.org/10.1111/j.1365-2443.2007.01041.x
- Kutty, G., Huang, S.N., and Kovacs, J.A. 2003. Characterization of thioredoxin reductase genes (trr1) from Pneumocystis carinii and Pneumocystis jiroveci. Gene 310, 175-183. https://doi.org/10.1016/S0378-1119(03)00549-3
- Lee, E.H., Hyun, D.H., Park, E.H., and Lim, C.J. 2010. A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Mol. Biol. Rep. 37, 3663-3671. https://doi.org/10.1007/s11033-010-0018-1
- Lopert, P., Day, B.J., and Patel, M. 2012. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7, e50683. https://doi.org/10.1371/journal.pone.0050683
- Machida, T., Ishibashi, A., Kirino, A., Sato, J., Kawasaki, S., Niimura, Y., Honjoh, K., and Miyamoto, T. 2012. Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. PLoS One 7, e45988. https://doi.org/10.1371/journal.pone.0045988
- Missall, T.A. and Lodge, J.K. 2005. Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 4, 487-489. https://doi.org/10.1128/EC.4.2.487-489.2005
- Nair, P.M. and Choi, J. 2011. Characterization and transcriptional regulation of thioredoxin reductase 1 on exposure to oxidative stress inducing environmental pollutants in Chironomus riparius. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 161, 134-139.
- Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D. 1990. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301.
- Nordberg, J. and Arner, E.S. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
- Park, M.S., Kim, H.J., Park, A.R., Ahn, K., Lim, H.W., and Lim, C.J. 2012. Pap1p-dependent upregulation of thioredoxin 3 and thioredoxin reductase genes from the fission yeast under nitrosative stress. Can. J. Microbiol. 58, 206-211. https://doi.org/10.1139/w11-125
- Rocha, E.R., Tzianabos, A.O., and Smith, C.J. 2007. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J. Bacteriol. 189, 8015-8023. https://doi.org/10.1128/JB.00714-07
-
Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular
$H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222 - Sajiki, K., Hatanaka, M., Nakamura, T., Takeda, K., Shimanuki, M., Yoshida, T., Hanyu, Y., Hayashi, T., Nakaseko, Y., and Yanagida, M. 2009. Genetic control of cellular quiescence in S. pombe. J. Cell. Sci. 122, 1418-1429. https://doi.org/10.1242/jcs.046466
- Serata, M., Iino, T., Yasuda, E., and Sako, T. 2012. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. Microbiology 158, 953-962. https://doi.org/10.1099/mic.0.053942-0
- Serrano, L.M., Molenaar, D., Wels, M., Teusink, B., Bron, P.A., de Vos, W.M., and Smid, E.J. 2007. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 6, 29. https://doi.org/10.1186/1475-2859-6-29
- Sherman, M.P., Aeberhard, E.E., Wong, V.Z., Griscavage, J.M., and Ignarro, L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308. https://doi.org/10.1006/bbrc.1993.1359
-
Song, S.H., Kim, B.M., Lim, C.J., Song, Y.S., and Park, E.H. 2009. Expression of the
$atf1^+$ gene is upregulated in fission yeast under nitrosative and nutritional stresses. Can. J. Microbiol. 55, 1323-1327. https://doi.org/10.1139/W09-087 - Uziel, O., Borovok, I., Schreiber, R., Cohen, G., and Aharonowitz, Y. 2004. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 186, 326-334. https://doi.org/10.1128/JB.186.2.326-334.2004
-
Vivancos, A.P., Jara, M., Zuin, A., Sanso, M., and Hidalgo, E. 2006. Oxidative stress in Schizosaccharomyces pombe: different
$H_2O_2$ levels, different response pathways. Mol. Genet. Genomics 276, 495-502. https://doi.org/10.1007/s00438-006-0175-z - Yoshitake, S., Nanri, H., Fernando, M.R., and Minakami, S. 1994. Possible differences in the regenerative roles played by thioltransferase and thioredoxin for oxidative damaged proteins. Biochem. J. 116, 42-46. https://doi.org/10.1093/oxfordjournals.jbchem.a124500
- Zhao, F., Yan, J., Deng, S., Lan, L., He, F., Kuang, B., and Zeng, H. 2005. A thioredoxin reductase inhibitor induces growth inhibition and apoptosis in five cultured human carcinoma cell lines. Cancer Lett. 236, 46-53.