• 제목/요약/키워드: periodontopathogen

검색결과 7건 처리시간 0.015초

Fusobacterium nucleatum GroEL signaling via Toll-like receptor 4 in human microvascular endothelial cells

  • Lee, Hae-Ri;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • 제37권3호
    • /
    • pp.130-136
    • /
    • 2012
  • The GroEL heat-shock protein from Fusobacterium nucleatum, a periodontopathogen, activates risk factors for atherosclerosis in human microvascular endothelial cells (HMEC-1) and ApoE-/- mice. In this study, we analyzed the signaling pathways by which F. nucleatum GroEL induces the proinflammatory factors in HMEC-1 cells known to be risk factors associated with the development of atherosclerosis and identified the cellular receptor used by GroEL. The MAPK and NF-${\kappa}B$ signaling pathways were found to be activated by GroEL to induce the expression of interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), E-selectin, and tissue factor (TF). These effects were inhibited by a TLR4 knockdown. Our results thus indicate that TLR4 is a key receptor that mediates the interaction of F. nucleatum GroEL with HMEC-1 cells and subsequently induces an inflammatory response via the MAPK and NF-${\kappa}B$ pathways.

Effect of Xylitol on various Oral bacteria

  • Na, Hee Sam;Kim, Sheon Min;Kim, Seyeon;Choi, Yoon Hee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제38권4호
    • /
    • pp.175-180
    • /
    • 2013
  • Xylitol is a five-carbon sugar alcohol that reduces the incidence of caries by inhibiting the growth of oral streptococci, including Streptococcus mutans. Since xylitol is transported via the fructose phosphotransferase system, we hypothesized that it could also affect the growth of other oral bacteria strains. We tested the effects of xylitol against non-periodontopathogenic oral bacteria frequently found in healthy subjects as well as periodontopathogens including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. With 5% xylitol, Streptococcus vestibularis and Gemella morbillorum showed marked growth inhibition. With 10% xylitol, all of the tested periodontopathogens and Actinomyces naeslundii showed marked growth inhibition, whereas the growth inhibition of Neisseria mucosa, Neisseria sicca and Veillonella parvula was mild only. Xylitol is a widely used sweetener and the concentration used in our experiment is easily achieved in the oral cavity. If xylitol reduces the growth of periodontopathogens more preferentially, it could also reduce the prevalence of these pathogens and have clinical utility in the prevention or treatment of periodontal disease.

사람 치주염 병소의 치은연하지면세균막에서 분리된 Fusobacterium animalis KCOM 1280의 유전체 염기서열 해독 (Draft genome sequence of Fusobacterium animalis KCOM 1280 isolated from a human subgingival plaque of periodontitis lesion)

  • 박순낭;임윤경;신자영;노한성;국중기
    • 미생물학회지
    • /
    • 제54권2호
    • /
    • pp.146-148
    • /
    • 2018
  • Fusobacterium animalis (예전에 Fusobacterium nucleatum subsp. animalis으로 알려짐)는 그람 음성이면서, 혐기성 및 선형의 세균이다. F. animalis는 사람 구강 내 정상 세균총의 하나이며 치주질환원인균이라 여겨지고 있다. F. animalis KCOM 1280 (= ChDC F318) 균주는 사람 치주질환 병소에서 분리되었다. 본 논문에서 F. animalis KCOM 1280 균주 유전체 염기서열을 해독하여 보고하고자 한다.

치주병원균의 성장에서의 heme의 영향 (Heme effects of hemin on growth of peridontopathogens)

  • 유현준;이성훈
    • 구강회복응용과학지
    • /
    • 제37권1호
    • /
    • pp.31-38
    • /
    • 2021
  • 목적: 이 연구의 목적은 치주병원균에 대한 헴의 영향을 살펴보기 위함이다. 연구 재료 및 방법: 치주낭에 존재하는 7종의 혐기성세균을 이용하여 실험을 진행하였다. 세균을 혐기환경에서 배지를 이용하여 hemin의 있고 없음으로 하여 배양을 하였다. 세균의 성장은 매 6시간마다 분광광도계를 이용하여 측정하였다. 결과: 헤민의 존재여부에 따른 성장의 차이는 Porphyromonas gingivalis에서만 관찰되었다. Treponema denticola를 제외한 치주병원균의 성장은 헤민의 농도에 의존적인 것으로 관찰되었다. T. denticola의 성장은 헤민에 의해 방해를 받았다. 결론: 헴은 치은연하 치태의 미생물 생태계에서 미생물분포의 불균형을 유도하여 치주염을 유발하는 환경을 조장할 것이다.

Anti-Inflammatory Efficacy of Human-Derived Streptococcus salivarius on Periodontopathogen-Induced Inflammation

  • Dong-Heon Baek;Sung-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.998-1005
    • /
    • 2023
  • Streptococcus salivarius is a beneficial bacterium in oral cavity, and some strains of this bacterium are known to be probiotics. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of S. salivarius G7 lipoteichoic acid (LTA) on lipopolysaccharide (LPS) and LTA of periodontopathogens. The surface molecules of S. salivarius G7 was extracted, and single- or co-treated on human monocytic cells with LPS and LTA of periodontopathogens. The induction of cytokine expression was evaluated by real-time PCR and ELISA. After labeling fluorescence on LPS and LTA of periodontopathogens, it was co-treated with S. salivarius LTA to the cell. The bound LPS and LTA were measured by a flow cytometer. Also, the biding assay of the LPS and LTA to CD14 and LPS binding protein (LBP) was performed. The surface molecules of S. salivarius G7 did not induce the expression of inflammatory cytokines, and S. salivarius G7 LTA inhibited the inflammatory cytokines induced by LPS and LTA of periodontopathogens. S. salivarius G7 LTA inhibited the binding of its LPS and LTA to cells. Also, S. salivarius G7 LTA blocked the binding of its LPS and LTA to CD14 and LBP. S. salivarius G7 has an inhibitory effect on inflammation induced by LPS or LTA of periodontopathogens, and may be a candidate probiotics for prevention of periodontitis.

Periodontopathogen LPSs Regulate MicroRNA Expression in Human Gingival Epithelial Cells

  • Lee, Hwa-Sun;Na, Hee-Sam;Jeong, So-Yeon;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.109-116
    • /
    • 2011
  • Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopoly-saccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs (miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 ${\mu}g$/ml of E. coli (Ec) LPS or 5 ${\mu}g$/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875-3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.