Periodontopathogen LPSs Regulate MicroRNA Expression in Human Gingival Epithelial Cells

  • Lee, Hwa-Sun (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Na, Hee-Sam (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Jeong, So-Yeon (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Jeong, Sung-Hee (Department of Oral Medicine, School of Dentistry, Pusan National University) ;
  • Park, Hae-Ryoun (Department of Oral Pathology, School of Dentistry, Pusan National University) ;
  • Chung, Jin (Department of Oral Microbiology, School of Dentistry, Pusan National University)
  • Received : 2011.05.11
  • Accepted : 2011.08.23
  • Published : 2011.09.30

Abstract

Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopoly-saccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs (miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 ${\mu}g$/ml of E. coli (Ec) LPS or 5 ${\mu}g$/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875-3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.

Keywords

References

  1. Bartel DP, MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002
  2. Birkedal-Hansen H, Role of cytokines and inflammatory mediators in tissue destruction. J. Periodontal Res. 1993;28:500-10. https://doi.org/10.1111/j.1600-0765.1993.tb02113.x
  3. Bramanti, T. E., G. G. Wong, S. T. Weintraub, S. C. Holt. Chemical characterization and biologic properties of lipopolysaccharide from Bacteroides gingivalis strains W50, W83, and ATCC 33277. Oral Microbiol. Immunol. 1989;4:183-92.
  4. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2009;26:745-52.
  5. Chiang CY, Fu E, Shen EC, Chiu HC. Effects of CD14 receptors on tissue reactions induced by local injection of two Gramnegative bacterial lipopolysaccharides. J Periodontal Res 2003; 38:36-43. https://doi.org/10.1034/j.1600-0765.2003.01617.x
  6. Diya Zhang, Lili Chen, Shenglai Li, Zhiyuan Gu, Jie Yan. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 2008;14(2):99-107. https://doi.org/10.1177/1753425907088244
  7. Fujiwara T, Nishihara T, Koga T, Hamada S. Serological properties and immunobiological activities of lipopolysaccharides from black-pigmented and related oral Bacteroides species. J Gen Microbiol 1988;134:2867-76
  8. Garrison SW, Holt SC, Nichols FC. Lipopolysaccharide-stimulated PGE2 release from human monocytes. Comparison of lipopolysaccharides prepared from suspected periodontal pathogens. J Periodontol 1988;59:684-7. https://doi.org/10.1902/jop.1988.59.10.684
  9. Gemmell, E., R. I. Marshall, G. J. Seymour. Cytokines and prostaglandins in immune homeostasis and tissue destruction in periodontal disease. Periodontol. 2000 1997;14:112-43. https://doi.org/10.1111/j.1600-0757.1997.tb00194.x
  10. Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med. 2008; 40:197-208. https://doi.org/10.1080/07853890701771823
  11. Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 1994;5:78- 111. https://doi.org/10.1111/j.1600-0757.1994.tb00020.x
  12. Hashimoto M, Asai Y, Tamai R, Jinno T, Umatani K, Ogawa T. Chemical structure and immunobiological activity of lipid A from Prevotella intermedia ATCC 25611 lipopolysaccharide. FEBS Lett. 2003;543(1-3):98-102 https://doi.org/10.1016/S0014-5793(03)00414-9
  13. Hofstad, T., K. Sveen, G. Dahlen. Chemical composition, serologic reactivity and endotoxicity of lipopolysaccharides extracted in different ways from Bacteroides fragilis, Bacteroides melaninogenicus and Bacteroides oralis. Acta Pathol. Microbiol. Scand. Sect. B 1977;85:262-70.
  14. Jotwani R, Moonga BS, Gupta S, Cutler CW. Nuclear factorkappaB p50 subunits in chronic periodontitis and Porphyromonas gingivalis lipopolysaccharide-pulsed dendritic cells. Ann N Y Acad Sci. 2010;1192:278-5. https://doi.org/10.1111/j.1749-6632.2009.05247.x
  15. Koga, T., T. Nishihara, T. Fujiwara, T. Nishizawa, N. Okahashi, T. Noguchi,and S. Hamada. Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coli. Infect. Immun. 1985;47:638-47.
  16. Koga T, Nishihara T, Fujiwara T, Nisizawa T, Okahashi N, Noguchi T, Hamada S. Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coli. Infect Immun. 1985;47(3):638-47.
  17. Kumada H, Haishima Y, Umemoto T, Tanamoto K. Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. J Bacteriol. 1995;177(8):2098-106. https://doi.org/10.1128/jb.177.8.2098-2106.1995
  18. Kumada, H., Y. Haishima, T. Umemoto, K. Tanamoto. Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. J. Bacteriol. 1995;177:2098-106. https://doi.org/10.1128/jb.177.8.2098-2106.1995
  19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  20. Mansheim, B. J., A. B. Onderdonk, D. L. Kasper. Immunochemical and biologic studies of the lipopolysaccharide of Bacteroides melaninogenicius subspecies asaccharolyticus. J. Immunol. 1978;120:72-8.
  21. Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, Nakao K, Hirayama T, Kohno S. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer. 2011;128(2):361-70. https://doi.org/10.1002/ijc.25348
  22. Nair, B. C., W. R. Mayberry, R. Dziak, P. B. Chen, M. Levine, E. Hausmann. Biological effects of a purified lipopolysaccharide from Bacteroides gingivalis. J. Periodontal Res. 1983;18:40-9. https://doi.org/10.1111/j.1600-0765.1983.tb00333.x
  23. Oglesby IK, McElvaney NG, Greene CM. MicroRNAs in inflammatory lung disease--master regulators or target practice? Respir Res. 2010; 28:11-148.
  24. Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner- Svensson HM, Lindsay MA. Rapid changes in microRNA- 146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol 2008;180:5689-98. https://doi.org/10.4049/jimmunol.180.8.5689
  25. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009; 28:369-78. https://doi.org/10.1007/s10555-009-9188-5
  26. Simon BL, Goldman HM, Ruben MP, Baker E. The role of endotoxin in periodontal disease. II. Correlation of the amount of endotoxin in human gingival exudate with the clinical degree of inflammation. J Periodontol. 1970;41:81-6. https://doi.org/10.1902/jop.1970.41.2.81
  27. Sun Y, Shu R, Li CL, Zhang MZ. Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells. J Periodontol. 2010; 81(10):1488-96. https://doi.org/10.1902/jop.2010.100004
  28. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U S. A 2006;103:12481-6. https://doi.org/10.1073/pnas.0605298103
  29. Tobias, P. S., J. Gegner, R. Tapping, R. S. Or, J. Methison, J. D. Lee, V. Kravchenko, J. Han, and R. J. Ulevitch. Lipopolysaccharide dependent cellular activation. J. Periodontal Res. 1997;32:99-103. https://doi.org/10.1111/j.1600-0765.1997.tb01388.x
  30. van Winkelhoff AJ, Loos BG, van der Reijden WA, van der Velden U. Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction. J Clin Periodontol 2002;29: 1023-8. https://doi.org/10.1034/j.1600-051X.2002.291107.x
  31. Westphal, O., Jann, K. Bacterial lipopolysaccharides: extraction with phenol water and further application of the procedure. Methods Carbohydr. Chem. R, 1965:83.
  32. Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, Yu Q. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009; 23(20):2388-93. https://doi.org/10.1101/gad.1819009
  33. Yoshimura A, Hara Y, Kaneko T, Kato I. Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodontal Res. 1997;32(3):279-86. https://doi.org/10.1111/j.1600-0765.1997.tb00535.x