Draft genome sequence of *Fusobacterium animalis* KCOM 1280 isolated from a human subgingival plaque of periodontitis lesion

Soon-Nang Park^{1†}, Yun Kyong Lim^{1†}, Ja Young Shin², Hanseong Roh², and Joong-Ki Kook^{1,3*}

¹Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea

²Macrogen Inc., Seoul 08511, Republic of Korea

³Oral Biology Research Institute, Chosun University, Gwangju 61452, Republic of Korea

사람 치주염 병소의 치은연하지면세균막에서 분리된 Fusobacterium animalis KCOM 1280의 유전체 염기서열 해독

박순낭^{1†} · 임윤경^{1†} · 신자영² · 노한성² · 국중기^{1,3*}

¹조선대학교 치과대학 구강생화학교실 및 한국구강미생물자원은행, ²마크로젠, ³조선대학교 구강생물학연구소

(Received December 12, 2017; Accepted February 6, 2018)

Fusobacterium animalis (formerly *Fusobacterium nucleatum* subsp. *animalis*) is a Gram-negative, anaerobic, and filament-shaped bacterium. *F. animalis* may be a part of normal flora and a periodontopathogen of human oral cavity. *F. animalis* KCOM 1280 (= ChDC F318) was isolated from a human periodontitis lesion. In this report, we present the draft genome sequence of *F. animalis* KCOM 1280.

Keywords: Fusobacterium animalis, human, periodontitis

Fusobacterium nucleatum subsp. *animalis* was classified as one of four or five subspecies of *Fusobacterium nucleatum* by DNA-DNA hybridization (DDH) and electrophoretic patterns of glutamate dehydrogenase and 2-oxoglutarate reductase (Gharbia and Shah, 1990, 1992). Recently, *F. nucleatum* subsp. *animalis* was reclassified as *Fusobacterium animalis* based on the average nucleotide identity and genome-to-genome distance analyses (Kook *et al.*, 2017). *F. animalis* is a Gram-negative, anaerobic, and filament-shaped bacterium (Gharbia and Shah, 1990). *F. animalis* may be a commensal species of human oral cavity. *F. animalis* KCOM 1280 (= ChDC F318) was isolated from a human periodontitis lesion. In this report, we present the draft genome sequence of *F. animalis* KCOM 1280.

The *F. animalis* KCOM 1280 was grown on brain heart infusion (BHI, Difco Laboratories) medium supplemented with 0.5% yeast extract, 0.05% cysteine HCl-H₂O, 0.5 mg/ml of hemin, 2 µg/ml of vitamin K₁, and 5% sheep blood in an anaerobic chamber (Model Bactron I, Sheldon Manufacturing Inc.) maintaining with a gas mixture of 10% H₂, 5% CO₂, and 85% N₂ (Park *et al.*, 2013). The bacterial genomic DNA was prepared as described previously and DNA concentration was determined by the EpochTM Microplate Spectrophotometer (BioTek Instruments Inc.) at wavelengths of 260 and 280 nm (Cho *et al.*, 2015).

The genomic DNA of *F. animalis* KCOM 1280 was sequenced using the Illumina Hiseq 2000 platform by Macrogen Inc. The library of 5 kb mate-pair was sequenced which reached coverage of 2,056×. The *de novo* assembly was performed by ALLPATHS-LG (Gnerre *et al.*, 2011) and SSPACE (Boetzer

[†]These authors contributed equally to this work.

^{*}For correspondence. E-mail: jkkook@chosun.ac.kr;

Tel.: +82-62-230-6877; Fax: +82-62-224-3706

and Pirovano, 2014). All gaps among the scaffolds were filled by GapCloser (Luo *et al.*, 2012; http://sourceforge.net/projects/ soapdenovo2/files/GapCloser). And we confirmed the scaffolds were placed at gaps on the largest scaffold by dot plot analysis. Finally, the assembly was polished by iCORN2 (Otto *et al.*, 2010). Genome annotation was conducted by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (https://www. ncbi.nlm.nih.gov/ genome/annotation prok/).

The complete genome of F. animalis KCOM 1280 was 2,674,036 bp in length and had a G + C content of 26.9% (Table 1). A total of 2,399 protein-coding sequences (CDSs), 14 rRNAs, and 53 tRNAs were annotated (Table 1). The genome sequence contained virulence factors such as haemagglutinin, hemolysin transporter protein ShIB, hemolysin A, protease 3 precursor, FtsH protease regulator HflK, metalloprotease LoiP/YpwA, ATP-dependent zinc metalloprotease FtsH, protease HtpX, protease 4, papain family cysteine protease, putative protease YhbU precursor, metalloprotease LoiP precursor, putative metalloprotease YpwA, sialic acid-binding periplasmic protein SiaP precursor, sialic acid TRAP transporter permease protein SiaT, outer membrane porin F, multidrug resistance protein MexA/MdtC/MdtK/NorM, multidrug export ATP-binding/permease protein, multidrug export protein MepA, multidrug-efflux transporter 1 regulator, putative multidrug export ATP-binding/permease protein, macrolide export protein MacA, macrolide export ATP-binding/ permease protein MacB, antitoxin ChpS/YwqK/YefM/RelB/ MazE, toxin YoeB, toxin zeta, plasmid encoded toxin Txe, outer membrane porin F precursor, and transport protein TonB. The genome contained phage genes such as phage portal protein, phage capsid family protein, phage tail sheath protein,

Table 1. Genome	features of	Fusobacterium	animalis	KCOM 1280

Attribute	Value	
Genome size (bp)	2,674,036	
GC content (%)	26.9	
Number of contig	4	
Number of total gene	2,610	
Number of protein-coding gene	2,399	
Number of tRNA	53	
Number of complete rRNA (5S, 16S, 23S)	14 (4, 5, 5)	
Number of partial rRNA (23S)	1	
Number of ncRNA	3	
Number of pseudogene	141	

phage-like element PBSX protein XkdM, phage-related minor tail protein, putative prophage phiRv2 integrase, phage tail protein (Tail_P2_I), phage P2 GpU, phage late control gene D protein (GPD), phage tail tube protein FII, phage major capsid protein E, phage terminase large subunit (GpA), N-terminal phage replisome organiser (Phage_rep_org_N), and SPBc2 prophagederived glycosyltransferase SunS. The complete genome encodes proteins for the biofilm formation, autoinducer-2 (AI-2) modifying protein LsrG, autoinducer 2 sensor kinase/phosphatase LuxQ, and glycosyltransferase family 28 C-terminal domain. It also contained type II secretion system protein D/E/F, type IV secretion system protein virB4/virB9/ virB10/virB11/PtIG, preprotein translocase subunit YajC, and protein translocase subunit SecA/SecD/SecE/ SecY.

The genome also contained the oxidative stress-response genes such as anaerobic nitric oxide reductase flavorubredoxin, anaerobic sulfite reductase subunit A/B/C, thioredoxin reductase, glutaredoxin, peptide methionine sulfoxide reductase MsrB, thiol-disulfide oxidoreductase ResA, nitroreductase A, pyruvateflavodoxin oxidoreductase, rubrerythrin (conferring superoxide dismutase-like activity), and NADH oxidase. The genome contained the three two-component systems (PdtaS/PdtaR, YpdA/YpdB, and YehU/putative response regulatory protein).

The *F. animalis* KCOM 1280 strain was deposited in the Korean Collection for Oral Microbiology.

Nucleotide sequence accession number

This whole Genome sequence has been deposited at DDBJ/ ENA/GenBank under the accession NJGJ00000000. The version described in this paper is version NJGJ01000000.

적 요

Fusobacterium animalis (예전에 Fusobacterium nucleatum subsp. animalis으로 알려짐)는 그람 음성이면서, 혐기성 및 선 형의 세균이다. F. animalis는 사람 구강 내 정상 세균총의 하나 이며 치주질환원인균이라 여겨지고 있다. F. animalis KCOM 1280 (= ChDC F318) 균주는 사람 치주질환 병소에서 분리되 었다. 본 논문에서 F. animalis KCOM 1280 균주 유전체 염기 서열을 해독하여 보고하고자 한다.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017R1 A2B4004894).

References

- Boetzer, M. and Pirovano, W. 2014. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. *BMC Bioinformatics* 15, 211.
- Cho, E., Park, S.N., Lim, Y.K., Shin, Y., Paek, J., Hwang, C.H., Chang, Y.H., and Kook, J.K. 2015. *Fusobacterium hwasookii* sp. nov., isolated from a human periodontitis lesion. *Curr. Microbiol.* 70, 169–175.
- Gharbia, S.E. and Shah, H.N. 1990. Heterogeneity within Fusobacterium nucleatum, proposal of four subspecies. Lett. Appl. Microbiol. 10, 105–108.

Gharbia, S.E. and Shah, H.N. 1992. Fusobacterium nucleatum subsp.

fusiforme subsp. nov. and *Fusobacterium nucleatum* subsp. *animalis* subsp. nov. as additional subspecies within *Fusobacterium nucleatum*. *Int. J. Syst. Bacteriol.* **42**, 296–298.

- Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker, B.J., Sharpe, T., Hall, G., Shea, T.P., Sykes, S., *et al.* 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. *Proc. Natl. Acad. Sci.* USA 108, 1513–1518.
- Kook, J.K., Park, S.N., Lim, Y.K., Cho, E., Jo, E., Roh, H., Shin, Y., Paek, J., Kim, H.S., Kim, H., *et al.* 2017. Genome-based reclassification of *Fusobacterium nucleatum* subspecies at the species level. *Curr. Microbiol.* 74, 1137–1147.
- Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 1, 18. Erratum in: Gigascience. 2015. 4, 30.
- Otto, T.D., Sanders, M., Berriman, M., and Newbold, C. 2010. Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. *Bioinformatics* 26, 1704–1707.
- Park, S.N., Lim, Y.K., and Kook, J.K. 2013. Development of quantitative real-time PCR primers for detecting 42 oral bacterial species. *Arch. Microbiol.* 195, 473–482.