• 제목/요약/키워드: periodic solutions

검색결과 318건 처리시간 0.025초

MULTIPLE SOLUTIONS FOR A SUSPENDING BEAM EQUATION AND THE GEOMETRY OF THE MAPPING

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.211-218
    • /
    • 2009
  • We investigate the multiple solutions for a suspending beam equation with jumping nonlinearity crossing three eigenvalues, with Dirichlet boundary condition and periodic condition. We show the existence of at least six nontrivial periodic solutions for the equation by using the finite dimensional reduction method and the geometry of the mapping.

  • PDF

SIGN CHANGING PERIODIC SOLUTIONS OF A NONLINEAR WAVE EQUATION

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.243-257
    • /
    • 2008
  • We seek the sign changing periodic solutions of the nonlinear wave equation $u_{tt}-u_{xx}=a(x,t)g(u)$ under Dirichlet boundary and periodic conditions. We show that the problem has at least one solution or two solutions whether $\frac{1}{2}g(u)u-G(u)$ is bounded or not.

  • PDF

MOTION IN A HANGING CABLE WITH VARIOUS DIFFERENT PERIODIC FORCING

  • Oh, Hyeyoung
    • The Pure and Applied Mathematics
    • /
    • 제21권4호
    • /
    • pp.281-293
    • /
    • 2014
  • We investigate long-term motions of the cable when cable has different types of periodic forcing term. Various different types of solutions are presented by using the 2nd order Runge-Kutta method under various initial conditions. There appeared to be small- and large-amplitude solutions which have different nodal structure.

MULTIPLE POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS WITH IMPULSE

  • Song, Xiaohua;Zhao, Zengqin;Wang, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.875-883
    • /
    • 2009
  • At least two positive solutions of a first-order periodic boundary value problem with impulse are obtained by establishing a new cone and the theorem of fixed point index. And at the end of this paper we give an example to illustrate the application of our main results.

  • PDF

EXISTENCE OF PERIODIC SOLUTIONS TO LIAPUNOV CHARACTERISTIC INDEX EQUATIONS

  • Wang, Han You;Ouyang, Jun;Yao, Zhuo
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제19권2호
    • /
    • pp.123-131
    • /
    • 2006
  • In this paper, a numerical programming for Liapunov index of differential equations with periodic coefficients depending on parameters is given. The associated equations are given at first, then existence of periodic solutions to the associated equations is proved in this paper. And we compute periodic solution u(t) of the associated equations. Finally, we give the error of approximate calculation.

  • PDF

TIME PERIODIC SOLUTION FOR THE COMPRESSIBLE MAGNETO-MICROPOLAR FLUIDS WITH EXTERNAL FORCES IN ℝ3

  • Qingfang Shi;Xinli Zhang
    • Journal of the Korean Mathematical Society
    • /
    • 제60권3호
    • /
    • pp.587-618
    • /
    • 2023
  • In this paper, we consider the existence of time periodic solutions for the compressible magneto-micropolar fluids in the whole space ℝ3. In particular, we first solve the problem in a sequence of bounded domains by the topological degree theory. Then we obtain the existence of time periodic solutions in ℝ3 by a limiting process.

Approximating Coupled Solutions of Coupled PBVPs of Non-linear First Order Ordinary Differential Equations

  • Dhage, Bapurao Chandrabhan
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.221-233
    • /
    • 2016
  • The present paper proposes a new monotone iteration method for existence as well as approximation of the coupled solutions for a coupled periodic boundary value problem of first order ordinary nonlinear differential equations. A new hybrid coupled fixed point theorem involving the Dhage iteration principle is proved in a partially ordered normed linear space and applied to the coupled periodic boundary value problems for proving the main existence and approximation results of this paper. An algorithm for the coupled solutions is developed and it is shown that the sequences of successive approximations defined in a certain way converge monotonically to the coupled solutions of the related differential equations under some suitable mixed hybrid conditions. A numerical example is also indicated to illustrate the abstract theory developed in the paper.

RANGE OF PARAMETER FOR THE EXISTENCE OF PERIODIC SOLUTIONS OF LI$\'{E}$NARD DIFFERENTIAL EQUATIONS

  • Lee, Yong-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • 제32권2호
    • /
    • pp.271-279
    • /
    • 1995
  • In 1986, Fabry, Mawhin and Nkashama [1] have considered periodic solutios for Lienard equation $$ (1_s) x" + f(x)x' + g(t,x) = s, $$ where s is a real parameter, f and g are continuous functions, and g is $2\pi$-periodic in t and have proved that if $$ (H) lim_{$\mid$x$\mid$\to\infty} g(t,x) = \infty uniformly in t \in [0,2\pi], $$ there exists $s_1 \in R$ such that $(1_s)$ has no $2\pi$periodic solution if $s< s_1$, and at least one $2\pi$-periodic solution if $s = s_1$, and at least two $2\pi$-periodic solutions if $s > s_1$.s_1$.

  • PDF

ANTI-PERIODIC SOLUTIONS FOR BAM NEURAL NETWORKS WITH MULTIPLE DELAYS ON TIME SCALES

  • Shu, Jiangye;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.279-292
    • /
    • 2011
  • In this paper, we consider anti-periodic solutions of the following BAM neural networks with multiple delays on time scales: $$\{{x^\Delta_i(t)=-a_i(t)e_i(x_i(t))+{\sum\limits^m_{j=1}}c_{ji}(t)f_j(y_j(t-{\tau}_{ji}))+I_i(t),\atop y^\Delta_j(t)=-b_j(t)h_j(y_j(t))+{\sum\limits^n_{i=1}}d_{ij}(t)g_i(x_i(t-{\delta}_{ij}))+J_j(t),}\$$ where i = 1, 2, ..., n,j = 1, 2, ..., m. Using some analysis skills and Lyapunov method, some sufficient conditions on the existence and exponential stability of the anti-periodic solution to the above system are established.