• 제목/요약/키워드: periodic differential equation

검색결과 58건 처리시간 0.03초

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

ALMOST PERIODIC SOLUTIONS OF PERIODIC SECOND ORDER LINEAR EVOLUTION EQUATIONS

  • Nguyen, Huu Tri;Bui, Xuan Dieu;Vu, Trong Luong;Nguyen, Van Minh
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.223-240
    • /
    • 2020
  • The paper is concerned with periodic linear evolution equations of the form x"(t) = A(t)x(t)+f(t), where A(t) is a family of (unbounded) linear operators in a Banach space X, strongly and periodically depending on t, f is an almost (or asymptotic) almost periodic function. We study conditions for this equation to have almost periodic solutions on ℝ as well as to have asymptotic almost periodic solutions on ℝ+. We convert the second order equation under consideration into a first order equation to use the spectral theory of functions as well as recent methods of study. We obtain new conditions that are stated in terms of the spectrum of the monodromy operator associated with the first order equation and the frequencies of the forcing term f.

EXISTENCE OF THREE POSITIVE PERIODIC SOLUTIONS OF NEUTRAL IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Yuji;Xia, Jianye
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.243-256
    • /
    • 2010
  • This paper is concerned with the neutral impulsive functional differential equations $$\{{x'(t)\;+\;a(t)x(t)\;=\;f(t,\;x(t\;-\;\tau(t),\;x'(t\;-\;\delta(t))),\;a.e.\;t\;{\in}\;R, \atop {\Delta}x(t_k)\;=\;b_kx(t_k),\;k\;{\in}\;Z.$$ Sufficient conditions for the existence of at least three positive T-periodic solution are established. Our results generalize and improve the known ones. Some examples are presented to illustrate the main results.

WEIGHTED PSEUDO ALMOST PERIODIC SOLUTIONS OF HOPFIELD ARTIFICIAL NEURAL NETWORKS WITH LEAKAGE DELAY TERMS

  • Lee, Hyun Mork
    • 충청수학회지
    • /
    • 제34권3호
    • /
    • pp.221-234
    • /
    • 2021
  • We introduce high-order Hopfield neural networks with Leakage delays. Furthermore, we study the uniqueness and existence of Hopfield artificial neural networks having the weighted pseudo almost periodic forcing terms on finite delay. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

STABILITY OF A PERIODIC SOLUTION FOR FUZZY DIFFERENTIAL EQUATIONS

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.217-222
    • /
    • 2003
  • In this paper, we consider the fuzzy differential equations (equation omitted) where F(t, x(t)) is a continuous fuzzy mapping on [0, $\infty$) ${\times}$ E$\^$n/. The purpose of this paper is to prove that the solution ${\Phi}$(t) of the fuzzy differential equations is equiasymptotically stable in the large and uniformly asymptotically stable in the large.

ON PERIODICIZING FUNCTIONS

  • Naito Toshiki;Shin Jong-Son
    • 대한수학회보
    • /
    • 제43권2호
    • /
    • pp.253-263
    • /
    • 2006
  • In this paper we introduce a new concept, a 'periodicizing' function for the linear differential equation with the periodic forcing function. Moreover, we construct this function, which is closely related with the solution of a difference equation and an indefinite sum. Using this function, we can obtain a representation of solutions from which we see immediately the asymptotic behavior of the solutions.