• 제목/요약/키워드: performance-based plastic design

검색결과 178건 처리시간 0.024초

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

복합영상관의 성능위주설계를 위한 가연물의 연소발열특성 연구: 객석의자의 열발생률 및 연소확산속도를 중심으로 (A Study on the Heat Release Characteristics of Fire Load for Performance Based Design of Multiplexes: A Focus on the Heat Release Rate and Fire Spread Rate of Cinema Seats)

  • 남동군;장효연;황철홍;임옥근
    • 한국화재소방학회논문지
    • /
    • 제34권1호
    • /
    • pp.11-17
    • /
    • 2020
  • 성능위주설계의 설계화원 정보는 피난안전성 평가에 직접적인 영향을 미치기 때문에, 실물화재 실험에 근거한 설계화원의 설정이 매우 중요하다. 복합영상관에 대한 성능위주설계의 신뢰성을 개선시키기 위하여, 상영관 의자에 대한 화재실험을 통해 열발생률과 화재확산속도 등의 화재거동에 관한 정보를 제공한다. 이를 위하여 실제 상영관과 유사하게 배열된 다수의 객석 의자가 적용되었다. 주요 결과로서, 객석의자 1개에 대하여 최대 열발생률과 단위 질량당 발열량은 각각 415~988 kW와 15.2~23.8 MJ/kg의 범위를 갖는다. 신형과 구형 객석의자의 평균 단위 질량당 발열량은 각각 23.6 MJ/kg과 16.7 MJ/kg으로 측정되었다. 즉, 신형의자의 증가된 플라스틱 및 쿠션재의 함량으로 인하여, 신형이 구형에 비해 화재위험성이 높은 것으로 확인되었다. 추가로 객석의자가 일렬로 배치될 때, 점화위치와 상관없이 0.39~0.42 m/min의 화재확산속도가 관찰되었다. 마지막으로 복합영상관의 성능위주설계를 위하여 객석의자의 최대 열발생률과 화재성장률로 구성된 화재성장곡선이 제안되었다.

영상정보디스플레이용 비대칭 비구면 삼각 프리즘 광학계 연구 (Investigation of Asymmetric Aspherical Triangular Prism Optical System for Video Information Display)

  • 윤갑석;유경선;현동훈
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.590-595
    • /
    • 2014
  • We have investigated anamorphic prism lenses with distortions of 0.3-0.5%. We designed the plastic triangular lens and confirmed the minimum resolution using MTF graphs. Also we confirmed that the SVGA optical system can realize a resolution of $864{\times}648$ 56 megapixels. A distortion of about 0.5% aberration appears in the maximum field, and a finite beam aberration of about $15{\mu}m$ is confirmed. We made a mold based on the design data and completed the prism lens through exodus molding. We confirmed the shape error (< $30{\mu}m$) and surface roughness (> 40 nm) of the three sides. We made the video-information-display prototype glasses using prism lens by measuring the performance, we determined the distortion aberration (0.3%) and SVGA resolution. Our approach will enable fabrication of a portable large-screen display device for glasses and sunglasses for the domestic market and, after 2015, for the world market.

일방향 섬유로 성능향상된 교량 상판의 파괴거동 및 항복선 이론을 적용한 해석적 연구 (A Study on the Failure Behavior and the Application of Yield-Line Theory on the Bridge Decks Strengthened by Directional Fiber Plastic)

  • 심종성;오홍섭;류승무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.81-86
    • /
    • 2001
  • The concrete bridge decks are in need of replacement and rehabilitation due to decreasing load carrying capacity. In this study, to propose a strengthening technique that improves usability and structural performance of the bridge deck and to propose an efficient strengthening design technique which satisfies both the strength End serviceability of the bridge deck, this paper shows the failure characteristics of the strengthened bridge decks and proposes an empirical yield criterion. Therefore, strengthening efficiency was proposed based on the experiment and yield line analysis result. The yield line theory which adopts the modified criteria of Johansen is considered to predict the ultimate strength about all strengthening material(Carbon Fiber Sheet, Carbon Fiber Rod, Grid Type Carbon Fiber).

  • PDF

Virtual Qualification을 통한 자동차용 전장부품의 수명 평가 (Life Assessment of Automotive Electronic Part using Virtual Qualification)

  • 이해진;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.143-146
    • /
    • 2005
  • In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

  • PDF

다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구 (A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure)

  • 이효은;이준한;김종선;조구영
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발 (Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method)

  • 최인섭;장지상;김준희
    • 한국전산구조공학회논문집
    • /
    • 제30권6호
    • /
    • pp.523-530
    • /
    • 2017
  • 본 연구에서는 역량스펙트럼법을 이용해 얻어진 구조물의 성능점을 확률적으로 평가하는 방법을 제시하였다. ATC-40에 따라 역량스펙트럼법을 이용하여 4층 1경간 철골구조물의 성능점을 산정하였다. 요구스펙트럼을 이용하여 구조물의 성능한계를 초과하는지 여부를 분석하기 위해 구조부재의 소성변형각으로부터 정의되는 구조물의 성능한계에 대해 한계변위를 도출하였다. 또한 설계응답스펙트럼과 유사한 응답스펙트럼을 가지는 인공지진파 30개를 선정하여 스펙트럼 가속도에 따른 각 성능한계의 초과여부를 통해 fragility curve를 도출하였다. 관측된 초과확률을 이용하여 fragility curve를 도출하기 위해 maximum likelihood method를 사용하였다. 각 성능한계점에 대응하는 설계응답스펙트럼의 응답가속도값에서 성능한계점을 초과할 확률은 존재하는 것으로 확인되었다. 본 방식은 구조물의 성능점에 대해 지진파의 불확실성을 고려한 확률적 평가가 가능하고, 시간증분해석이 필요하지 않아 해석시간을 상당부분 단축시킬 수 있다는 장점이 있다.

Energy-based numerical evaluation for seismic performance of a high-rise steel building

  • Zhang, H.D.;Wang, Y.F.
    • Steel and Composite Structures
    • /
    • 제13권6호
    • /
    • pp.501-519
    • /
    • 2012
  • As an alternative to current conventional force-based assessment methods, the energy-based seismic performance of a code-designed 20-storey high-rise steel building is evaluated in this paper. Using 3D nonlinear dynamic time-history method with consideration of additional material damping effect, the influences of different restoring force models and P-${\Delta}/{\delta}$ effects on energy components are investigated. By combining equivalent viscous damping and hysteretic damping ratios of the structure subjected to strong ground motions, a new damping model, which is amplitude-dependent, is discussed in detail. According to the analytical results, all energy components are affected to various extents by P-${\Delta}/{\delta}$ effects and a difference of less than 10% is observed; the energy values of the structure without consideration of P-${\Delta}/{\delta}$ effects are larger, while the restoring force models have a minor effect on seismic input energy with a difference of less than 5%, but they have a certain effect on both viscous damping energy and hysteretic energy with a difference of about 5~15%. The paper shows that the use of the hysteretic energy at its ultimate state as a seismic design parameter has more advantages than seismic input energy since it presents a more stable value. The total damping ratio of a structure consists of viscous damping ratio and hysteretic damping ratio and it is found that the equivalent viscous damping ratio is a constant for the structure, while the equivalent hysteretic damping ratio approximately increases linearly with structural response in elasto-plastic stage.