DOI QR코드

DOI QR Code

Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method

역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발

  • Choi, Insub (Department of Architectural Engineering, Yonsei University) ;
  • Jang, Jisang (Department of Architectural Engineering, Yonsei University) ;
  • Kim, JunHee (Department of Architectural Engineering, Yonsei University)
  • 최인섭 (연세대학교 건축공학과) ;
  • 장지상 (연세대학교 건축공학과) ;
  • 김준희 (연세대학교 건축공학과)
  • Received : 2017.11.10
  • Accepted : 2017.12.11
  • Published : 2017.12.29

Abstract

In this study, a method of probabilistic evaluation of the performance point of the structure obtained by capacity spectrum method (CSM) is presented. The performance point of the 4-story and 1-bay steel structure was determined by using CSM according to ATC-40. In order to analyze whether the demand spectrums exceed the performance limit of the structure, the limit displacements are derived for the performance limit of the structure defined from the plastic deformation angle of the structural member. In addition, by selecting a total of 30 artificial seismic wave having the response spectrum similar to the design response spectrum, the fragility curves were derived by examining whether the response spectrum obtained from the artificial seismic wave were exceeded each performance limit according to the spectral acceleration. The maximum likelihood method was used to derive the fragility curve using observed excess probabilities. It has been confirmed that there exists a probability that the response acceleration value of the design response spectrum corresponding to each performance limit exceeds the performance limit. This method has a merit that the stochastic evaluation can be performed considering the uncertainty of the seismic waves with respect to the performance point of the structure, and the analysis time can be shortened because the incremental dynamic analysis (IDA) is not necessary.

본 연구에서는 역량스펙트럼법을 이용해 얻어진 구조물의 성능점을 확률적으로 평가하는 방법을 제시하였다. ATC-40에 따라 역량스펙트럼법을 이용하여 4층 1경간 철골구조물의 성능점을 산정하였다. 요구스펙트럼을 이용하여 구조물의 성능한계를 초과하는지 여부를 분석하기 위해 구조부재의 소성변형각으로부터 정의되는 구조물의 성능한계에 대해 한계변위를 도출하였다. 또한 설계응답스펙트럼과 유사한 응답스펙트럼을 가지는 인공지진파 30개를 선정하여 스펙트럼 가속도에 따른 각 성능한계의 초과여부를 통해 fragility curve를 도출하였다. 관측된 초과확률을 이용하여 fragility curve를 도출하기 위해 maximum likelihood method를 사용하였다. 각 성능한계점에 대응하는 설계응답스펙트럼의 응답가속도값에서 성능한계점을 초과할 확률은 존재하는 것으로 확인되었다. 본 방식은 구조물의 성능점에 대해 지진파의 불확실성을 고려한 확률적 평가가 가능하고, 시간증분해석이 필요하지 않아 해석시간을 상당부분 단축시킬 수 있다는 장점이 있다.

Keywords

References

  1. Abeysinghe, R.S., Gavaise, E., Rosignoli, M., Tzaveas, T. (2002) Pushover Analysis of Inelastic Seismic Behavior of Greveniotikos Bridge, J. Bridge Eng., 7(2), pp.115-126. https://doi.org/10.1061/(ASCE)1084-0702(2002)7:2(115)
  2. Applied Technology Council (1996) Seismic Evaluation and Retrofit of Concrete Buildings, Report No. ATC-40. Redwood City, CA.
  3. Banerjee, S., Shinozuka, M. (2007) Nonlinear Static Procedure for Seismic Vulnerability Assessment of Bridges, Comput.-Aided Civil & Infrastruct. Eng., 22(4), pp.293-305. https://doi.org/10.1111/j.1467-8667.2007.00486.x
  4. Chopra, A.K., Goel, R.K. (2002) A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings, Earhq. Eng. Struct., 31(3), pp.561-582. https://doi.org/10.1002/eqe.144
  5. Fajfar, P. (2000) A Nonlinear Analysis Method for Performance-based Seismic Design, Earhq. Spectra, 16(3), pp.573-592. https://doi.org/10.1193/1.1586128
  6. FEMA (1997) NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report No. FEMA-273 Federal Emergency Management Agency, Washington, D.C.
  7. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Building, Report No. FEMA-356 Federal Emergency Management Agency, Washington, D.C.
  8. Freeman, S.A. (1998) The Capacity Spectrum Method as a Tool for Seismic Design, In Proc. 11th European Conf. Earthq. Eng., pp.6-11.
  9. Karim, K.R., Yamazaki, F. (2003) A Simplified Method of Constructing Fragility Curves for Highway Bridges, Earthq. Eng. Struct. D., 32(10), pp.1603-1626. https://doi.org/10.1002/eqe.291
  10. Kim, G.J., Song. J.K. (2014) Seismic Fragility Analysis of Lightning Arrester using Capacity Spectrum Method, J. Comput. Struct. Eng. Inst. Korea, 27(4), pp.255-263. https://doi.org/10.7734/COSEIK.2014.27.4.255
  11. Korea Building Code 2016 (2016) Architectural institute of Korea.
  12. McCrum, D., Amato, G., Suhail, R. (2016) Development of Seismic Fragility Functions for a Moment Resisting Reinforced Concrete Framed Structure, Open Constr. & Build. Tech. J., 12, pp.136-149.
  13. Seyedi, D., Gehl, P., Douglas, J., Davenne, L., Mezher, N., Ghavamian, S. (2010) Development of Seismic Fragility Surfaces for Reinforced Concrete Buildings by Means of Nonlinear Time-History Analysis, Earthq. Eng. Struct. D., 39(1), pp.91-108. https://doi.org/10.1002/eqe.939
  14. Shafei, B., Zareian, F., Lignos, D.G. (2011) A Simplified Method for Collapse Capacity Assessment of Moment-Resisting Frame and Shear Wall Structural Systems, Eng. Struct., 33(4), pp.1107-1116. https://doi.org/10.1016/j.engstruct.2010.12.028
  15. Shakeri, K., Shayanfar, M.A., Kabeyasawa, T. (2010) A Story Shear-Based Adaptive Pushover Procedure for Estimating Seismic Demands of Buildings, Eng. Struct., 32(1), pp.174-183. https://doi.org/10.1016/j.engstruct.2009.09.004
  16. Shinozuka, M., Feng, M.Q., Kim, H.K., Kim, S.H. (2000) Nonlinear Static Procedure for Fragility Curve Development, J. Eng. Mech-ASCE, 126(12), pp.1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  17. Shinozuka, M., Feng, M.Q., Lee, J., Naganuma, T. (2000) Statistical Analysis of Fragility Curves, J. Eng. Mech-ASCE, 126(12), pp.1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  18. You. J.S., Yang. W.J., Yi. W.H., Kim. H.J. (2014) Propose of Capacity Spectrum Method by Nonlinear Earthquake Response Analysis, J. Comput. Struct. Eng. Inst. Korea, 27(6), pp.501-508. https://doi.org/10.7734/COSEIK.2014.27.6.501
  19. Zheng, Y., Usami, T., Ge, H. (2003) Seismic Response Predictions of Multi-Span Steel Bridges Through Pushover Analysis, Earthq. Eng. Struct. D., 32(8), pp.1259-1274. https://doi.org/10.1002/eqe.272