• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.033 seconds

Study on Prediction of Similar Typhoons through Neural Network Optimization (뉴럴 네트워크의 최적화에 따른 유사태풍 예측에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, In-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.427-434
    • /
    • 2019
  • Artificial intelligence (AI)-aided research currently enjoys active use in a wide array of fields thanks to the rapid development of computing capability and the use of Big Data. Until now, forecasting methods were primarily based on physics models and statistical studies. Today, AI is utilized in disaster prevention forecasts by studying the relationships between physical factors and their characteristics. Current studies also involve combining AI and physics models to supplement the strengths and weaknesses of each aspect. However, prior to these studies, an optimization algorithm for the AI model should be developed and its applicability should be studied. This study aimed to improve the forecast performance by constructing a model for neural network optimization. An artificial neural network (ANN) followed the ever-changing path of a typhoon to produce similar typhoon predictions, while the optimization achieved by the neural network algorithm was examined by evaluating the activation function, hidden layer composition, and dropouts. A learning and test dataset was constructed from the available digital data of one typhoon that affected Korea throughout the record period (1951-2018). As a result of neural network optimization, assessments showed a higher degree of forecast accuracy.

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.

Study on the Effective Compensation of Quantization Error for Machine Learning in an Embedded System (임베디드 시스템에서의 양자화 기계학습을 위한 효율적인 양자화 오차보상에 관한 연구)

  • Seok, Jinwuk
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.157-165
    • /
    • 2020
  • In this paper. we propose an effective compensation scheme to the quantization error arisen from quantized learning in a machine learning on an embedded system. In the machine learning based on a gradient descent or nonlinear signal processing, the quantization error generates early vanishing of a gradient and occurs the degradation of learning performance. To compensate such quantization error, we derive an orthogonal compensation vector with respect to a maximum component of the gradient vector. Moreover, instead of the conventional constant learning rate, we propose the adaptive learning rate algorithm without any inner loop to select the step size, based on a nonlinear optimization technique. The simulation results show that the optimization solver based on the proposed quantized method represents sufficient learning performance.

Evaluation of inelastic performance of moment resisting steel frames designed by resizing algorithms (재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성 평가)

  • Seo, Ji Hyun;Kwon, Bong kwon;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.361-371
    • /
    • 2006
  • In recent years, to overcome drawbacks related to the aplicati on of classical structural optimization algorithms, various drift design methods based on factores of member displacement participation factors have been developed to size members if they satisfy stiffness criteria. In particular, a resizing algorithm based on dynamic displacement participation factors from the response spectrum analysis has been applied in the drift design of steel structures subjec ted to seismic lateral forces. In this aproach, active members are selected for displacement control based on the displacement participation fa ve members may be taken out and added to the active members for the drift control. The resizing algorithm can be practically and effectively applied to drift design of high-rise buildings however, the inelastic behavior o f the resizing algorithm has not ben evaluated yet. To develop the resizing algorithm considering the performance of nonlinearity as well a s elastic stifness, the evaluation model of resizing algorithm s is developed and aplied to the examples of moment-resisting steel frame, which is one of the simplest structural systems. The inelastic behavior of moment-resisting steel frame designed by the resizing algorithm is also discussed.

Budget Estimation Problem for Capacity Enhancement based on Various Performance Criteria (다중 평가지표에 기반한 도로용량 증대 소요예산 추정)

  • Kim, Ju-Young;Lee, Sang-Min;Cho, Chong-Suk
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.175-184
    • /
    • 2008
  • Uncertainties are unavoidable in engineering applications. In this paper we propose an alpha reliable multi-variable network design problem under demand uncertainty. In order to decide the optimal capacity enhancement, three performance measures based on 3E(Efficiency, Equity, and Environmental) are considered. The objective is to minimize the total budget required to satisfy alpha reliability constraint of total travel time, equity ratio, and total emission, while considering the route choice behavior of network users. The problem is formulated as the chance-constrained model for application of alpha confidence level and solved as a lexicographic optimization problem to consider the multi-variable. A simulation-based genetic algorithm procedure is developed to solve this complex network design problem(NDP). A simple numerical example ispresented to illustrate the features of the proposed NDP model.

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

Replica Update Propagation Method for Cost Optimization of Request Forwarding in the Grid Database (그리드 데이터베이스에서 전송비용 최적화를 위한 복제본 갱신 전파 기법)

  • Jang, Yong-Il;Baek, Sung-Ha;Bae, Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1410-1420
    • /
    • 2006
  • In this paper, a replica update propagation method for cost optimization of request forwarding in the Grid database is proposed,. In the Grid database, the data is replicated for performance and availability. In the case of data update, update information is forwarded to the neighbor nodes to synchronize with the others replicated data. There are two kinds of update propagation method that are the query based scheme and the log based scheme. And, only one of them is commonly used. But, because of dynamically changing environment through property of update query and processing condition, strategies that using one propagation method increases transmission cost in dynamic environment. In the proposed method, the three classes are defined from two cost models of query and log based scheme. And, cost functions and update propagation method is designed to select optimized update propagation scheme from these three classes. This paper shows a proposed method has an optimized performance through minimum transmission cost in dynamic processing environment.

  • PDF

Implementation of Optimizing Compiler for Bus-based VLIW Processors (버스기반의 VLIW형 프로세서를 위한 최적화 컴파일러 구현)

  • Hong, Seung-Pyo;Moon, Soo-Mook
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.4
    • /
    • pp.401-407
    • /
    • 2000
  • Modern microprocessors exploit instruction-level parallel processing to increase the performance. Especially VLIW processors supported by the parallelizing compiler are used more and more in specific applications such as high-end DSP and graphic processing. Bus-based VLIW architecture was proposed for these specific applications and it was designed to reduce the overhead of forwarding unit and the instruction width. In this paper, a optimizing scheduling compiler developed for the proposed bus-based VLIW processor is introduced. First, the method to model interconnections between buses and resource usage patterns is described. Then, on the basis of the modeling, machine-dependent optimization techniques such as bus-to-register promotion, copy coalescing and operand substitution were implemented. Optimization techniques for general-purpose VLIW microprocessors such as selective scheduling and enhanced pipelining scheduling(EPS) were also implemented. The experiment result shows about 20% performance gain for multimedia application benchmarks.

  • PDF

Autonomic Self Healing-Based Load Assessment for Load Division in OKKAM Backbone Cluster

  • Chaudhry, Junaid Ahsenali
    • Journal of Information Processing Systems
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2009
  • Self healing systems are considered as cognation-enabled sub form of fault tolerance system. But our experiments that we report in this paper show that self healing systems can be used for performance optimization, configuration management, access control management and bunch of other functions. The exponential complexity that results from interaction between autonomic systems and users (software and human users) has hindered the deployment and user of intelligent systems for a while now. We show that if that exceptional complexity is converted into self-growing knowledge (policies in our case), can make up for initial development cost of building an intelligent system. In this paper, we report the application of AHSEN (Autonomic Healing-based Self management Engine) to in OKKAM Project infrastructure backbone cluster that mimics the web service based architecture of u-Zone gateway infrastructure. The 'blind' load division on per-request bases is not optimal for distributed and performance hungry infrastructure such as OKKAM. The approach adopted assesses the active threads on the virtual machine and does resource estimates for active processes. The availability of a certain server is represented through worker modules at load server. Our simulation results on the OKKAM infrastructure show that the self healing significantly improves the performance and clearly demarcates the logical ambiguities in contemporary designs of self healing infrastructures proposed for large scale computing infrastructures.

Optimization of the Similarity Measure for User-based Collaborative Filtering Systems (사용자 기반의 협력필터링 시스템을 위한 유사도 측정의 최적화)

  • Lee, Soojung
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.1
    • /
    • pp.111-118
    • /
    • 2016
  • Measuring similarity in collaborative filtering-based recommender systems greatly affects system performance. This is because items are recommended from other similar users. In order to overcome the biggest problem of traditional similarity measures, i.e., data sparsity problem, this study suggests a new similarity measure that is the optimal combination of previous similarity and the value reflecting the number of co-rated items. We conducted experiments with various conditions to evaluate performance of the proposed measure. As a result, the proposed measure yielded much better performance than previous ones in terms of prediction qualities, specifically the maximum of about 7% improvement over the traditional Pearson correlation and about 4% over the cosine similarity.