• Title/Summary/Keyword: peptide production

Search Result 460, Processing Time 0.024 seconds

Antioxidant and Anti-Inflammatory Effects of NCW Peptide from Clam Worm (Marphysa sanguinea)

  • Park, Young Ran;Park, Chan-Il;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1387-1394
    • /
    • 2020
  • Clam worms (Marphysa sanguinea) are a rich source of bioactive components such as the antibacterial peptide, perinerin. In the present study, we explored the physiological activities of a novel NCWPFQGVPLGFQAPP peptide (NCW peptide), which was purified from clam worm extract through high-performance liquid chromatography. Tandem mass spectrometry (MS/MS) revealed that NCW was a new peptide with a molecular weight of 1757.86 kDa. Moreover, NCW peptide exhibited significant antioxidant effects, causing a 50% inhibition of DPPH radical at a concentration of 20 μM without showing any cytotoxicity. These were associated with a reduction in the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in LPS-stimulated RAW264. 7 cells. Furthermore, NCW peptide exhibited anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via inhibition of the abnormal production of pro-inflammatory cytokines including nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). These anti-inflammatory effects of NCW peptide were associated with the inhibition of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Our results therefore suggest that this novel NCW peptide with antioxidant and anti-inflammatory effects could be a good therapeutic agent against inflammation-related diseases.

Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok;Kim Young-Ok;Shin Dong-Hoon;Shin Jeong-Hyun;Kim Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1041-1046
    • /
    • 2006
  • Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Effects of epitope sequence tandem repeat and proline incorporation on polyclonal antibody production against cytochrome 1A2 and 3A4

  • Ahn, Tae-Ho;Yun, Chul-Ho
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.418-420
    • /
    • 2009
  • We describe a method for producing polyclonal antibodies against peptide antigen cytochrome P450 1A2 and 3A4 using a tandem repeat of the epitope region and incorporation of proline residue between the repeated sequences. An ELISA assay revealed more efficient generation of polyclonal antibodies to tandem repeat peptide antigens than mono-epitope peptides. The incorporation of proline residues further stimulated antibody production.

Characteristics of Peptide Assimilation by Helicobacter pylori: Evidence for Involvement of Cell Surface Peptidase

  • YUN SOON-KYU;CHOI KYUNG-MIN;UHM CHANG-SUB;PARK JEONG-KYU;HWANG SE-YOUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.899-902
    • /
    • 2005
  • Peptide assimilation by Helicobacter pylori was investigated using L-phenylalanyl-3-thia-phenylalanine (PSP) as a detector peptide; the release of thiophenol upon enzymatic hydrolysis of PSP was spectrophotometrically detected with the aid of 5,5'-dithiobis[2-nitrobenzoic acid] (DTNB). By adding PSP to whole-cell suspension, thiophenol was produced progressively, resembling that found in Esherichia coli or Staphylococcus aureus. Interestingly, the rate of thiophenol production by H pylori in particular was markedly reduced when cells were pretreated with trypsin, indicating surface exhibition of peptidase. According to the competitive spectrophotometry using alanyl-peptides, H pylori did not appear to assimilate PSP through the peptide transport system. No discernible PSP assimilation could be ascertained in H pylori cells, unless provided with some additives necessary for peptidase activity, such as $Ni^{2+}\;or\;Mg^{2+}$ and an appropriate concentration of potassium or ammonium salts. These observations strongly suggest that, regardless of a presumptive peptide transport system, peptide assimilation of H. plori appears to be highly dependent upon milieu conditions, due to unique peptidase exhibition on the cell surface.

H-1, C-13, and N-15 resonance assignments of ENOD40B, a plant peptide hormone

  • Young Kee Chae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.2
    • /
    • pp.5-9
    • /
    • 2023
  • t ENOD40B, a plant peptide hormone, was doubly labeled with C-13 and N-15 by recombinant production in Escherichia coli. The peptide was prepared by affinity chromatography followed by protease cleavage and reverse-phase chromatography. To elucidate the mode of action against its receptor, sucrose synthase, we proceeded to assign the backbone and side-chain resonances using a set of double and triple resonance experiments. This result will be used to determine the three-dimensional structure of the peptide at its bound state as well as to observe the chemical shift changes upon binding.

Novel Vectors for the Convenient Cloning and Expression of In Vivo Biotinylated Proteins in Escherichia coli

  • Cho, Eun-Wie;Park, Jung-Hyun;Na, Shin-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.497-501
    • /
    • 1999
  • Biotinylation of recombinant proteins is a powerful tool for the detection and analysis of proteins of interest in a large variety of assay systems. The recent development of in vivo biotinylation techniques in E. coli has opened new possibilities for the production of site-specifically biotinylated proteins without the need for further manipulation after the isolation of the recombinantly expressed proteins. In the present study, a novel vector set was generated which allows the convenient cloning and expression of proteins of interest fused with an N-terminal in vivo biotinylated thioredoxin (TRX) protein. These vectors were derived from the previously reported pBIOTRX vector into which was incorporated part of the pBluescript II+phagemid multiple cloning site (MCS), amplified by PCR using a pair of sophisticated oligonucleotide primers. The functionality of these novel vectors was examined in this system by recombinant expression of rat transforming growth factor-$\beta$. Western-blot analysis using TRX-specific antibodies or peroxidase-conjugated streptavidin confirmed the successful induction of the fusion protein and the in vivo conjugation of biotin molecules, respectively. The convenience of molecular subcloning provided by the MCS and the effective in vivo biotinylation of proteins of interest makes this novel vector set an interesting alternative for the production of biotinylated proteins.

  • PDF

Design and Expression of Recombinant Antihypertensive Peptide Multimer Gene in Escherichia coli BL21

  • Rao, Shengqi;Su, Yujie;Li, Junhua;Xu, Zhenzhen;Yang, Yanjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1620-1627
    • /
    • 2009
  • The design and expression of an antihypertensive peptide multimer (AHPM), a common precursor of 11 kinds of antihypertensive peptides (AHPs) tandemly linked up according to the restriction sites of gastrointestinal proteases, were explored. The DNA fragment encoding the AHPM was chemically synthesized and cloned into expression vector pGEX-3X. After an optimum induction with IPTG, the recombinant AHPM fused with glutathione S-transferase (GST-AHPM) was expressed mostly as inclusion body in Escherichia coli BL21 and reached the maximal production, 35% of total intracellular protein. The inclusion body was washed, dissolved, and purified by cation-exchange chromatography under denaturing conditions, followed by refolding together with size-exclusion chromatography and gradual dialysis. The resulting yield of the soluble GSTAHPM (34 kDa) with a purity of 95% reached 399 mg/l culture. The release of high active fragments from the AHPM was confirmed by the simulated gastrointestinal digestion. The results suggest that the design strategy and production method of the AHPM will be useful to obtain a large quantity of recombinant AHPs at a low cost.

Identification of a Functionally Relevant Signal Peptide of Mouse Ficolin A

  • Kwon, Sang-Hoon;Kim, Min-Soo;Kim, Dong-Bum;Lee, Keun-Wook;Choi, Soo-Young;Park, Jin-Seu;Kim, Yeon-Hyang;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.532-538
    • /
    • 2007
  • Mouse ficolin A is a plasma protein with lectin activity, and plays a role in host defense by binding carbohydrates, especially GlcNAc, on microorganisms. The ficolin A subunit consists of an N-terminal signal peptide, a collagen-like domain, and a C-terminal fibrinogen-like domain. In this study, we show that ficolin A can be synthesized and oligomerized in a cell and secreted into culture medium. We also identify a functionally relevant signal peptide of ficolin A by using MS/MS analysis to determine the N-terminal sequence of secreted ficolin A. When the signal peptide of mouse ficolin A was fused with enhanced green fluorescent protein (EGFP), EGFP was released into HEK 293 cell medium, suggesting that the signal peptide can efficiently direct ficolin A secretion. Moreover, our results suggest that the signal peptide of ficolin A has potential application for the production of useful secretory proteins.

Therapeutic effect of a TM4SF5-specific peptide vaccine against colon cancer in a mouse model

  • Kwon, Sanghoon;Kim, Young-Eun;Park, Jeong-A;Kim, Doo-Sik;Kwon, Hyung-Joo;Lee, Younghee
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.215-220
    • /
    • 2014
  • Molecular-targeted therapy has gained attention because of its high efficacy and weak side effects. Previously, we confirmed that transmembrane 4 superfamily member 5 protein (TM4SF5) can serve as a molecular target to prevent or treat hepatocellular carcinoma (HCC). We recently extended the application of the peptide vaccine, composed of CpG-DNA, liposome complex, and TM4SF5 peptide, to prevent colon cancer in a mouse model. Here, we first implanted mice with mouse colon cancer cells and then checked therapeutic effects of the vaccine against tumor growth. Immunization with the peptide vaccine resulted in robust production of TM4SF5-specific antibodies, alleviated tumor growth, and reduced survival rate of the tumor-bearing mice. We also found that serum levels of VEGF were markedly reduced in the mice immunized with the peptide vaccine. Therefore, we suggest that the TM4SF5-specific peptide vaccine has a therapeutic effect against colon cancer in a mouse model.