Characteristics of Peptide Assimilation by Helicobacter pylori: Evidence for Involvement of Cell Surface Peptidase

  • YUN SOON-KYU (Graduate School of Biotechnology & Department of Bioinformatics and Biotechnology, Korea University) ;
  • CHOI KYUNG-MIN (Graduate School of Biotechnology & Department of Bioinformatics and Biotechnology, Korea University) ;
  • UHM CHANG-SUB (Department of Anatomy, College of Medicine, Korea University) ;
  • PARK JEONG-KYU (Department of Microbiology, College of Medicine, Chungnam National University) ;
  • HWANG SE-YOUNG (Graduate School of Biotechnology & Department of Bioinformatics and Biotechnology, Korea University)
  • Published : 2005.08.01

Abstract

Peptide assimilation by Helicobacter pylori was investigated using L-phenylalanyl-3-thia-phenylalanine (PSP) as a detector peptide; the release of thiophenol upon enzymatic hydrolysis of PSP was spectrophotometrically detected with the aid of 5,5'-dithiobis[2-nitrobenzoic acid] (DTNB). By adding PSP to whole-cell suspension, thiophenol was produced progressively, resembling that found in Esherichia coli or Staphylococcus aureus. Interestingly, the rate of thiophenol production by H pylori in particular was markedly reduced when cells were pretreated with trypsin, indicating surface exhibition of peptidase. According to the competitive spectrophotometry using alanyl-peptides, H pylori did not appear to assimilate PSP through the peptide transport system. No discernible PSP assimilation could be ascertained in H pylori cells, unless provided with some additives necessary for peptidase activity, such as $Ni^{2+}\;or\;Mg^{2+}$ and an appropriate concentration of potassium or ammonium salts. These observations strongly suggest that, regardless of a presumptive peptide transport system, peptide assimilation of H. plori appears to be highly dependent upon milieu conditions, due to unique peptidase exhibition on the cell surface.

Keywords

References

  1. Choi, K. M., J. K. Park, and S. Y. Hwang. 2003. Pathogenetic impact of vacuolar degeneration by accelerated transport of Helicobacter pylori VacA. J. Microbiol. Biotechnol. 13: 666-672
  2. Chung, M. I., M. H. Lim, Y. J. Lee, I. H. Kim, I. Y. Kim, J. H. Kim, K. H. Chang, and H. l. Kim. 2003. Reduction of ammonia accumulation and improvement of cell viability by expression of urea cycle enzymes in Chinese hamster ovary cells. J. Microbiol. Biotechnol. 13: 217-224
  3. Cover, T. and M. Blaser. 1992. Helicobacter pylori and gastroduodenal disease. Annu. Rev. Med. 42: 135-145
  4. Doig, P., B. L. de longe, R. A. Aim, E. D. Brown, M. UricaNickelsen, B. Noonan, S. D. Mills, P. Tummino, G Carmel, B. C. Guild, D. T. Moir, G F. Vovis, and T. J. Trust. 1999. Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol. Mol. Biol. Rev. 63: 675-707
  5. Gilvarg, C. 1981. In Ninet, L., P. E. Bost, D. H. Bovanchaud, and J. Florent (eds.). The Future of Antibiotherapy and Antibiotic Research, pp. 351-365. Academic Press
  6. Hwang, S. Y., D. A. Berges, J. J. Taggart, and C. Gilvarg. 1989. Portage transport of sulfanilamide and sulfanilic acid. J. Med. Chem. 32: 694-698 https://doi.org/10.1021/jm00123a034
  7. Hwang, S. Y., M. R. Ki, S. Y. Cho, and I. D. Yoo. 1995. Transport of sulfanilic acid via microbial dipeptide transport system. J. Microbiol. Biotechnol. 5: 315-318
  8. Hwang, S. Y., W. D. Kingsbury, N. M. Hall, D. R. Jakas, G. L. Dunn, and C. Gilvarg. 1986. Determination of leucine aminopeptidase using phenylalanyl-3-thia-phenylalanine as substrate. Anal. Biochem. 154: 552-558 https://doi.org/10.1016/0003-2697(86)90028-X
  9. Hwang, S. Y., M. R. Ki, S. Y. Cho, W. J. Lim, and I. D. Yoo. 1996. Competitive spectrophotometry for microbial dipeptide transport systems. J. Microbiol. Biotechnol. 6: 92-97
  10. Keenan, J., T. Day, S. Neal, B. Cook, G. Perez-Perez, R. Allardyce, and P. Bagshaw. 2000. A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol. Lett. 182: 259-264 https://doi.org/10.1111/j.1574-6968.2000.tb08905.x
  11. Ki, M. R., S. K. Yun, K. M. Choi, and S. Y. Hwang. 2003. Potential and significance of ammonium production from Helicobacter pylori. J. Microbiol. Biotechnol. 13: 673-679
  12. Ki, M. R., S. K. Yun, W. J. Lim, B. S. Hong, and S. Y. Hwang. 1999. Synergistic inhibition of membrane ATPase and cell growth of Helicobacter pylori by ATPase inhibitors. J. Microbiol. Biotechnol. 9: 414-421
  13. Kim, J. M., J. E. Shin, M. J. Han, S. H. Park, and D. H. Kim. 2003. Inhibitory effect of ginseng saponins and polysaccharides on infection and vacuolation of Helicobacter pylori. J. Microbiol. Biotechnol. 13: 706-709
  14. Kim, M. W., C. S. Shin, H. J. Yang, S. H. Kim, H. Y. Lim, C. H. Lee, M. K. Kim, and Y. H. Lim. 2004. Naltriben analogues as peptide anticancer drugs. J. Microbiol. Biotechnol. 14: 881-884
  15. Kingsbury, W. D., J. C. Boehm, D. Perry, and C. Gilvarg. 1984. Portage of various compounds into bacteria by attachment to glycine residues in peptides. Proc. Natl. Acad. Sci. USA 81: 4573-4576
  16. Lui, S. Y., K. L. Ling, and B. Ho. 2003. rdxA Gene is an unlike marker for metronidazole resistance in the asian Helicobacter pylori isolates. J. Microbiol. Biotechnol. 13: 751-758
  17. Mendz, G. L., S. L. Hazell, and L. van Gorkom. 1994. Pyruvate metabolism in Helicobacter pylori. Arch. Microbiol. 162: 187-192 https://doi.org/10.1007/BF00314473
  18. Parsonnet, J., S. Hansen, L. Rodriguez, A. B. Gelb, R. A. Warnke, E. Jellum, N. Orentreich, J. H. Vogelman, and G. D. Friedman. 1994. Helicobacter pylori infection and gastric lymphoma. New Engl. J. Med. 330: 1267-1271 https://doi.org/10.1056/NEJM199405053301803
  19. Payne, J. W. and T. M. Nisbet. 1980. Limitation to the use of radioactively labeled substrates for studying transport in microorganisms. FEBS Lett. 119: 73- 76 https://doi.org/10.1016/0014-5793(80)81000-3
  20. Perry, D. and C. Gilvarg. 1984. Spectrophotometric determination of affinities of peptides for their transport systems in Esherichia coli. J. Bacteriol. 169: 943-948
  21. Reynolds, D. J. and C. W. Penn. 1994. Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology 140: 2649-2656 https://doi.org/10.1099/00221287-140-10-2649
  22. Scannell, J. P. and D. L. Pruess. 1974. Naturally occurring amino acid and oligopeptide antimetabolites, pp. 189-243. In B. Weinstein (ed.). Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins: 3. Dekker, NY, U.S.A
  23. Stark, R. M., M. S. Suleiman, J. J. Hassan, J. Geenman, and M. R. Miller. 1997. Amino acid utilisation and deamination of glutamine and asparagine by Helicobacter pylori. J. Med. Microbiol. 46: 793-800 https://doi.org/10.1099/00222615-46-9-793
  24. Terada, T., K. Sawada, H. Saito, Y. Hashimoto, and K. J. Inui. 1999. Functional characteristics of basolateral peptide transporter in the human intestinal cell line-Caco-2. Am. J. Physiol. 276: G1435-G1441
  25. Yun, S. K., M. R. Ki, J. K. Park, W. J. Lim, and S. Y. Hwang. 2000. Cation flux-mediated activation of P-type ATPase in Helicobacter pylori. J. Microbiol. Biotechnol. 10: 441-448