Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok (Department of Biological Engineering, Division of Chemical Science and Biological Engineering, Korea University) ;
  • Kim Young-Ok (Department of Biological Engineering, Division of Chemical Science and Biological Engineering, Korea University) ;
  • Shin Dong-Hoon (Department of Food & Biotechnology, Korea University) ;
  • Shin Jeong-Hyun (Department of Dermatology, College of Medicine, Inha University) ;
  • Kim Eun-Ki (Department of Biological Engineering, Division of Chemical Science and Biological Engineering, Korea University)
  • Published : 2006.07.01

Abstract

Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Keywords

References

  1. Arteel, G. E. and H. Sies. 2001. The biochemistry of selenium and the glutathione system. Environ. Toxicol. Pharmacol. 10: 153-158 https://doi.org/10.1016/S1382-6689(01)00078-3
  2. Boonraeng, S., P. Foo-Trakul, W. Kanlayakrit, C. Chetanachitra, and J. Kasetsart. 2000. Effects of chemical, biochemical and physical treatments on the kinetics and on the role of some endogenous enzymes action of Baker's yeast lysis for foodgrade yeast extract production. Nat. Sci. 34: 270-278
  3. Byun, H. G. and S. K. Kim. 2001. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochem. 36: 1155-1162 https://doi.org/10.1016/S0032-9592(00)00297-1
  4. Cho, K. H. and J. K. Suh. 1999. Determination of arsenic, lead, and selenium in rice flour by graphite furnace atomic absorption spectrometry. Anal. Sci. Technol. 12: 130-135
  5. Choi, I. S. and K. M. Shim. 1984. Effect of some treatments on the autolysis of Baker's yeast. J. Kor. Soc. Food Nutr. 13: 313-318
  6. Chu, F.-F. and S. R. Esworthy. 1995. The expression of an intestinal form of glutathione peroxidase (GSHPx-GI) in rat intestinal epithelium. Arch. Biochem. Biophys. 323: 288-294 https://doi.org/10.1006/abbi.1995.9962
  7. Demirci, A. and A. L. Pometto III. 1999. Production of organically bound selenium yeast by continuous fermentation. J. Agricult. Food Chem. 47: 2491-2495 https://doi.org/10.1021/jf981198y
  8. Emonet, N., M. T. Leccia, A. Favier, J. C. Beani, and M. J. Richard. 1997. Thiols and selenium: Protective effect on human skin fibroblasts exposed to UVA radiation. J. Photochem. Photobiol. B Biol. 40: 84-90 https://doi.org/10.1016/S1011-1344(97)00041-9
  9. Hernandez-Caraballo, E. A., M. Burguera, and J. L. Burguera. 2002. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry. Spectrochim. Acta Part B. Atomic Spectros. 57: 2159-2165 https://doi.org/10.1016/S0584-8547(02)00169-6
  10. Hua, H., J. Liua, X. Liua, T. Zang, G. Luo, and J. Shena, 2005. Kinetic studies on the glutathione peroxidase activity of selenium-containing glutathione transferase. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141: 382-389 https://doi.org/10.1016/j.cbpc.2005.05.003
  11. Kunio, S. 2000. Antioxidant peptide from the protease digest of prawn muscle. Mar. Biotechnol. 2: 5-10
  12. Lee, H. J., K. W. Lee, K. H. Kim, H. K. Kim, and H. J. Lee. 2004. Antitumor activity of peptide fraction from traditional Korean soy sauce. J. Microbiol. Biotechnol. 14: 628-631
  13. Lim, Y. S., S. M. Bae, and K. Kim. 2005. Mass production of yeast spores from compressed yeast. J. Microbiol. Biotechnol. 15: 568-572
  14. Liu, J. Q., G. M. Luo, X. J. Ren, Y. Mu, Y. Bai, and J. C. Shen. 2000. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochim. Biophys. Acta 1481: 222-228 https://doi.org/10.1016/S0167-4838(00)00130-8
  15. McKenzie, R. C. 2000. Selenium, ultraviolet radiation and the skin. Clin. Exp. Dermatol. 25: 631-636 https://doi.org/10.1046/j.1365-2230.2000.00725.x
  16. Paglia, D. E. and W. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158-169
  17. Polatajko, A., M. Sliwka-Kaszynka, M. Dernovics, R. Ruzik, J. R. Encinar, and J. Szpunar. 2004. A systematic approach to selenium speciation in selenized yeast. J. Anal. Atom. Spectrom. 19: 114-120 https://doi.org/10.1039/b308756p
  18. Ren, X., S. Gao, D. You, H. Huang, Z. Liu, Y. Mu, J. Liu, Y. Zhang, G. Yan, G. Luo, T. Yang, and J. Shen. 2001. Cloning and expression of a single-chain catalytic antibody that acts as a glutathione peroxidase mimic with high catalytic efficiency. Biochem. J. 359: 369-374 https://doi.org/10.1042/0264-6021:3590369
  19. Rhee, S. J., C. J. Lee, M. R. Kim, and C. H. Lee. 2004. Potential antioxidant peptides in rice wine. J. Microbiol. Biotechnol.14: 715-721
  20. Ryu, J. Y. and H. G. Hur. 2005. Comparative analyses of flavonoids for nod gene induction in Bradyrhizobium japonicum USDA110. J. Microbiol. Biotechnol. 15: 1280-1285
  21. Schrauzer, G. N. 2000. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 130: 1653 -1656
  22. Son, S. M. and J. S. Kim. 2003. Optimization for autolysis of Brewer's yeast slurry. Korean J. Food Sci. Technol. 35: 201-205
  23. Stadtman, T. C. 1994. Selenium biochemistry. Adv. lnorg. Biochem. 10: 157-176
  24. Su, D., D. You, X. Ren, G. Luo, Y. Mu, G. Yan, Y. Xue, and J. Shen. 2001. Kinetics study of a selenium-containing ScFv catalytic antibody that mimics glutathione peroxidase. Biochem. Biophy. Res. Commun. 285: 702-707 https://doi.org/10.1006/bbrc.2001.5183
  25. Su, D., X. Ren, D. You, D. Li, Y. Mu, G. Yan, Y. Zhang, Y. Luo, Y. Xue, and J. Shen. 2001. Generation of three seleniumcontaining catalytic antibodies with high catalytic efficiency using a novel hapten design method. Arch. Biochem. Biophys. 395: 177-184 https://doi.org/10.1006/abbi.2001.2551
  26. Tapiero, H., D. M. Townsend, and K. D. Tew. 2003. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother. 57: 134-144 https://doi.org/10.1016/S0753-3322(03)00035-0
  27. Yamato S., Y. Ogra, and K. T. Suzuki. 2000. Exchange of endogenous selenium for dietary selenium as Se-enriched selenite in brain, liver, kidneys and testes. Life Sci. 67: 3041-3049 https://doi.org/10.1016/S0024-3205(00)00894-8