• 제목/요약/키워드: penalized spline

검색결과 15건 처리시간 0.016초

Mean estimation of small areas using penalized spline mixed-model under informative sampling

  • Chytrasari, Angela N.R.;Kartiko, Sri Haryatmi;Danardono, Danardono
    • Communications for Statistical Applications and Methods
    • /
    • 제27권3호
    • /
    • pp.349-363
    • /
    • 2020
  • Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However, application of the approach in informative sampling in a published article is uncommon. We propose a semiparametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The response variable is explained in terms of mean model, informative sample effect, area random effect and unit error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion probability to account for the informative sample effect. We determine the best and unbiased estimators for coefficient model and derive the restricted maximum likelihood estimators for the variance components. A simulation study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline to approach the function of the inclusion probability provides no significant difference distribution of root mean square error, except for few smaller samples.

벌점 스플라인 회귀모형에서의 이상치 탐지방법 (An Outlier Detection Method in Penalized Spline Regression Models)

  • 서한손;송지은;윤민
    • 응용통계연구
    • /
    • 제26권4호
    • /
    • pp.687-696
    • /
    • 2013
  • 이상치가 존재하는 경우 모형 적합의 결과가 왜곡될 수 있기 때문에 이상치 탐색은 데이터분석에 있어서 매우 중요하다. 이상치 탐지 방법은 많은 학자들에 의해 연구되어 왔다. 본 논문에서는 Hadi와 Simonoff (1993)가 제안한 직접적 이상치 탐지 방법을 벌점 스플라인 회귀모형에 적용하여 이상치를 탐지하는 과정을 제안하며 모의실험과 실제 데이터에 적용을 통하여 스플라인 회귀모형, 강건 벌점 스플라인 회귀모형과 효율성을 비교한다.

스플라인 정칙자를 사용한 투과 단층촬영을 위한 벌점우도 영상재구성 (Penalized-Likelihood Image Reconstruction for Transmission Tomography Using Spline Regularizers)

  • 정지은;이수진
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.211-220
    • /
    • 2015
  • Recently, model-based iterative reconstruction (MBIR) has played an important role in transmission tomography by significantly improving the quality of reconstructed images for low-dose scans. MBIR is based on the penalized-likelihood (PL) approach, where the penalty term (also known as the regularizer) stabilizes the unstable likelihood term, thereby suppressing the noise. In this work we further improve MBIR by using a more expressive regularizer which can restore the underlying image more accurately. Here we used a spline regularizer derived from a linear combination of the two-dimensional splines with first- and second-order spatial derivatives and applied it to a non-quadratic convex penalty function. To derive a PL algorithm with the spline regularizer, we used a separable paraboloidal surrogates algorithm for convex optimization. The experimental results demonstrate that our regularization method improves reconstruction accuracy in terms of both regional percentage error and contrast recovery coefficient by restoring smooth edges as well as sharp edges more accurately.

A Penalized Spline Based Method for Detecting the DNA Copy Number Alteration in an Array-CGH Experiment

  • Kim, Byung-Soo;Kim, Sang-Cheol
    • 응용통계연구
    • /
    • 제22권1호
    • /
    • pp.115-127
    • /
    • 2009
  • The purpose of statistical analyses of array-CGH experiment data is to divide the whole genome into regions of equal copy number, to quantify the copy number in each region and finally to evaluate its significance of being different from two. Several statistical procedures have been proposed which include the circular binary segmentation, and a Gaussian based local regression for detecting break points (GLAD) by estimating a piecewise constant function. We propose in this note a penalized spline regression and its simultaneous confidence band(SCB) approach to evaluate the statistical significance of regions of genetic gain/loss. The region of which the simultaneous confidence band stays above 0 or below 0 can be considered as a region of genetic gain or loss. We compare the performance of the SCB procedure with GLAD and hidden Markov model approaches through a simulation study in which the data were generated from AR(1) and AR(2) models to reflect spatial dependence of the array-CGH data in addition to the independence model. We found that the SCB method is more sensitive in detecting the low level copy number alterations.

비모수와 준모수 혼합모형을 이용한 소지역 추정 (Semiparametric and Nonparametric Mixed Effects Models for Small Area Estimation)

  • 정석오;신기일
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.71-79
    • /
    • 2013
  • 지역 또는 도메인에 작은 크기의 표본이 배정되어 추정의 정도가 나쁜 경우에 사용되는 준모수적 또는 비모수적 소지역 추정법은 최근 많은 연구가 진행되고 있다. 본 논문에서는 커널을 이용한 국소다항 혼합모형 소지역 추정법과 벌점 스플라인을 이용한 혼합모형 소지역 추정법이 연구되었다. 이 두 방법과 소지역추정에 흔히 사용되고 있는 선형 혼합모형을 모의실험을 통해 그 우수성을 비교하였다.

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.

Semiparametric Bayesian estimation under functional measurement error model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.379-385
    • /
    • 2010
  • This paper considers Bayesian approach to modeling a flexible regression function under functional measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under functional measurement error model without semiparametric component.

Multivariable Bayesian curve-fitting under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1645-1651
    • /
    • 2016
  • A lot of data, particularly in the medical field, contain variables that have a measurement error such as blood pressure and body mass index. On the other hand, recently smoothing methods are often used to solve a complex scientific problem. In this paper, we study a Bayesian curve-fitting under functional measurement error model. Especially, we extend our previous model by incorporating covariates free of measurement error. In this paper, we consider penalized splines for non-linear pattern. We employ a hierarchical Bayesian framework based on Markov Chain Monte Carlo methodology for fitting the model and estimating parameters. For application we use the data from the fifth wave (2012) of the Korea National Health and Nutrition Examination Survey data, a national population-based data. To examine the convergence of MCMC sampling, potential scale reduction factors are used and we also confirm a model selection criteria to check the performance.

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제22권4호
    • /
    • pp.349-359
    • /
    • 2015
  • We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.