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Abstract

The purpose of statistical analyses of array-CGH experiment data is to divide the whole genome into regions
of equal copy number, to quantify the copy number in each region and finally to evaluate its significance
of being different from two. Several statistical procedures have been proposed which include the circular
binary segmentation, and a Gaussian based local regression for detecting break points(GLAD) by estimating
a piecewise constant function. We propose in this note a penalized spline regression and its simultaneous
confidence band(SCRB) approach to evaluate the statistical significance of regions of genetic gain/loss. The
region of which the simultaneous confidence band stays above 0 or below 0 can be considered as a region of
genetic gain or loss. We compare the performance of the SCB procedure with GLAD and hidden Markov
model approaches through a simulation study in which the data were generated from AR(1) and AR(2)
models to reflect spatial dependence of the array-CGH data in addition to the independence model. We

found that the SCB method is more sensitive in detecting the low level copy number alterations.
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1. Introduction

The DNA copy number at a location in a genome is the number of copies of DNA. The normal copy
number is two for the autosomal chromosome in human. Many defects in human development are
due to gains and losses of chromosomes and chromosomal segments. DNA copy number alterna-
tions occurring in somatic cells are frequent contributors to cancer (Pinkel and Albertson, 2005).
Therefore, studying them is a way of identifying and validating important cancer genes (Mestre-
Escorihuela et al., 2007). There are various techniques for assessing DNA copy number variations.
Among them the array comparative genomic hybridization{array-CGH) has proven its value over
the past several years for analyzing DNA copy number variations. The majority of array-CGH
platforms use large-insert genomic clones such as bacterial artificial chromosomes(BAC), cDNA’s
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or oligonucleotide (oligo) (Pinkel and Albertson, 2005). It is expected that a gradual transition will
be made toward the use of oligo from the initial use of BAC through cDNA’s (Ylstra et al., 2000).

In the array-CGH experiment DNA from both reference and test genomes are differentially labeled
with fluorescent dyes and competitively hybridized to DNA targets arrayed on a glass slide. The
hybridization slide is then scanned and the relative hybridization intensity of the test and the
reference signals is ideally equal to the relative copy number of these sequences in the test and the
reference genomes. When there is no gain or loss, the relative intensity would be close to one, which
is referred to as “normal” in this note. In the case of chromosomal gain or loss the ratio becomes
greater than 1 or less than 1. The outcome variable of an array-CGH experiment is M = log,(R/G),
where R and G represent fluorescent intensities of the reference and the test samples, respectively.

In the microarray experiment it is important to perform the data pre-processing which consists of
filtering bad spots, normalization, determining the no missing proportion(NMP) and imputation
of missing values. Normalization removes the systematic bias due to variations in experimental
conditions and it has been one of hot issues in statistics on microarray (Fan and Niu, 2007; Rigaill
et al., 2008). The NMP is defined as the proportion of valid observations out of the total number of
arrays (Kim et al., 2005). There are several methods for imputing the missing values including the
k-nearest neighbor (Scheel et al., 2005; Kim et al., 2005). However, we don’t discuss these issues
on the pre-processing in this note.

The purpose of statistical analyses of array CGH experiment data are to divide the whole genome
into regions of equal copy number, to quantify the copy number in each region and finally to evaluate
its significance of being different from two. Several statistical procedures have been proposed which
include the circular binary segmentation(CBS, Olshen et al., 2004; Venkatraman and Olshen, 2007)
and a Gaussian based local regression for detecting break points by estimating a piecewise constant
function(GLAD, Hupé et al., 2004). Lai et al. (2005) conducted a comparison of eleven approaches
that included the above two methods. Chari et al. (2006) reviewed twenty three software packages
for the statistical analysis and visualization of the array-CGH data.

The DNA copy number of a human gene takes a positive integer and hence, the relative copy
number, R/G, assumes 1, 0.5, 1.5 and 2 for diploid, monoploid, triploid and tetraploid, respectively.
Even though the underlying biological process is of a step function of taking one of 1, 0.5, 1.5, 2
and efc. in a segment of a genome, the observed outcome variable shows deviation from the step
function (Figure 4.3a) due to various biological and experimental factors. In contrast to the gene
expression microarray experiment, array-CGH showed spatial dependence among sequences along
the chromosome. That is, if a copy number occurs at a certain locus, we expect that the same copy
number will be extended along segments around the locus. Smoothing is a natural way of using
spatial dependence (Eilers and de Menezes, 2005). ‘

We propose in this note using a penalized spline regression function to fit the observed data. We then
obtain a simultaneous confidence bands(SCB) for the regression function to evaluate the statistical
significance of regions of genetic gain/loss. The region for which the SCB stays over zero is deemed
to be the region of gain. The region of loss is similarly defined. Small scale simulation results are
reported for comparing the proposed method with two other commonly used procedures together
with the application of our approach to a gastric cancer data set.
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2. Materials and Data

We conducted an array-CGH experiment using a ¢cDNA microarray containing ~17,000 human
genes. A normal gastric mucosa sample and a tumor sample were obtained as a pair from each of
thirty gastric cancer patients during surgical operations at College of Medicine, Yonsei University in
1997-1999. Each of these patients was followed-up for at least five years. Use of these tissues were
approved by the Internal Review Board of College of Medicine, Yonsei University. We adopted
the indirect design in which a sex-matched placenta from a clinically healthy mother was used
a common reference. Thus, the outcome variable is log,{tumor/ref) — log,(normal/ref), where
“turnor”, “normal” and “ref’ represent the fluorescent intensities of the tumor, the normal tissue
and the common reference, respectively. For the details of the biological aspects of the experiment,
one can refer to Yang (2007) and Yang et al. (2007). We may note that Yang et al. (2007)’s data
set was produced under the direct design which interrogated in a single micorarray a normal gastric
mucosa sample and a twmor sample obtained from the same patient as a pair. The array-CGH
data set that we analyzed in this note used the same patients as Yang et al. (2007)’s. However, we
employed the indirect design in the experiment which required two microarrays for each patient.

The data set was preprocessed following the procedure described in Kim et al. (2005). Briefly, it
consisted of intensity-dependent normalization (Yang et al., 2002), deleting genes containing missing
values > 20% of the total number of observations, employing k-nearest neighbor (k = 10) method
for imputation of missing values and finally averaging values over multiple spots. We ended up
with 10,5685 x 30 data matrix after the preprocessing, where 10,585 and 30 stand for the numbers
of genes and cases, respectively.

3. Methods

3.1. Statistical issues and the review on the existing methods

The gene expression ¢cDNA microarray and the array-CGH experiments share several things in their
experimental technology. Often an array-CGH microarray experiment paralleled a gene expression
microarray experiment using the same platform, for example, to measure how much the variation
of the gene copy number contributed to the variation of gene expression in tumor cells {Pollack et
al., 2002). Statistical issues of these two experiments are, however, quite different.

Outcome variable, denoted by Y, for short, in a gene expression experiment is the relative amount
of mRNA transcripts, whereas Y represents the relative ratio of the DNA copy numbers for an
array-CGH experiment. The range of Y is mostly in (—6, 6) for the gene expression, while it is
mostly in (—1, 1) for the array-CGH. Two adjacent genes along the genome may have quite different
Y'’s for the gene expression experiment. However, DNA copy number alterations occur in contiguous
regions of a chromosome and hence Y’s are spatially dependent in an array-CGH experiment. It is
quite possible to aggregate Y’s over individuals for the gene expression. In an array-CGH between-
individual variation is sizable. Hence, exploratory analysis based on each individual is usually
conducted, particularly in a small sample study. One can report a region at which a gain occurred
for at least 3 cases out of 30 patients. Finding recurrent DNA copy number changes constitutes
another statistical issue (Shah et al., 2007; Rouveirol ef al., 2006). One of the most important goals
in a gene expression microarray experiment is to identify differentially expressed genes between
prespecified classes, for example, using a two sample ¢ test for the two group comparison. The
primary goal of the array-CGH is to partition the genome into regions of equal DNA copy number
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Table 3.1. Comparison of statistical characteristics of two cDNA microarray-based experiments: . gene expression experiment
versus array-CGH experiment.

Gene Expression Array-CGH

Target mRNA transcript genomic DNA

Outcome variable (Y) relative amount of relative ratio of
mRNA transcripts DNA copy numbers

Range of Y mostly in (-6, 6) mostly in (-1, 1)

Spatial dependence Two adjacent genes Y'’s are spatially dependent,
along the genome may have because DNA copy number
quite different Y'’s. changes occur in contiguous

regions of a chromosome.

Aggregation Possible to aggregate Exploratory analysis based
along individuals on each individual is usually

conducted. Finding recurrent
DNA copy number alterations
poses another statistical problem.

Statistical methods Two sample t test e.g., Partitioning the genome into
for the two group regions of equal DNA copy
comparison number and quantify the

copy number in each region.

and quantify the copy number in each region. Statistical methods of these two experiments were
geared to solve different problems and hence they were not exchangeable. Comparison of statistical
characteristics of these two experiments can be summarized in Table 3.1.

The initial and natural approach of identifying the locations with copy number transition is the
segmentation method, which could be formulated as a change point detection problem. According
to Barry and Hartigan (1993) change point detection can be formulated as follows: “We supposed
that there is an underlying sequence of parameters partitioned into contiguous blocks of equal
parameter values; the beginning of each block is said to be a change point.” By extending the
standard segmentation method Olshen et al. (2004) and Venkatraman and Olshen (2007) developed
a circular binary segmentation which detected change points (or break points) where neighboring
regions of DNA exhibited statistical significance in the copy number. For the other approaches of
the segmentation one can refer to Myers et al. (2004), Jong et al. (2004) and Picard et al. (2007).

Spatial dependence of DNA copy number changes can be accommodated by applying some form of
smoothing. Eilers and de Menezes (2005) proposed a quantile smoothing through a fused quantile
regression model of which the objective function to minimize was the sum of L;-norm of the deviance
and the L;-norm penalty of the successive differences of the copy numbers. Li and Zhu (2007) also
dealt the detection of regions of gains and losses in the fused quantile regression incorporating
the physical locations of clones instead of the uniform spacing between neighboring clones. Other
approaches of implementing spatial dependence can be found in Huang et al. (2005), Wen et al.
(2006) and Broét and Richardson (2006).

Hupé et al. (2004) applied the adaptive weights smoothing(AWS) algorithm to detect the chromo-
somal breakpoint based on a Gaussian' model. The AWS is an iterative, data-adaptive smoothing
procedure that was developed for smoothing in regression problems involving discontinuous regres-
sion functions. For the other smoothing or regression approaches one can refer to Huang et al.
(2005), Hsu et al. (2005) and Tibshirani and Wang (2008).
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Fridlyand et al. (2004) applied an unsupervised (discrete-index) hidden Markov models(HMM)
which had been familiar in the speech signal processing area (Rabiner, 1989). HMMs consist
of three components: a set of probahilities associated with transitions between all states, a set of
probability distributions associated with each states, and a distribution of initial states. The hidden
states represent the underlying copy number of the colones. Fitting HMMs on array-CGH data is
to partition the clones into the states which represent the underlying copy number of the group of
the clones. Stjerngvist et al. (2007) proposed a continuous-index HMM by extending Fridlyand et
al. (2004)’s discrete-index HMM.

3.2. A proposed procedure based on a penalized spline

Materials in the section are heavily dependent on Ruppert et al. (2003) and Henderson (1973). Let
Y; denote the log ratio of the " marker on a chromosome and let z; represent the physical location
of the i** marker(kb). We propose a penalized quadratic spline model of (3.1) to fit the array-CGH
plot of Figure 1.1,

Yi= f(w) +ei, & NIN©02), i=1,...,m,

K
fla) = E(Y|z) = Bo +51:L'+,32332+ch(x-m)3, (3.1)

k=1

where ()4 = max(0,x), {s}i, are knots and Z,i;l u? < C for some constant C.

The regression function f in (3.1} can be viewed as a derivative of its cusum, which renders clearer
interpretation in statistical inference on the array-CGH data. The normal region in which no
DNA copy number changes occur has zero derivative of the cusum, whereas in gain/loss region the
derivative of the cusum is equal to the jump size.

The penalized spline model of Equation (3.1) can be estimated through a linear mixed model
formulation as is described in Ruppert et al. (2003, pp. 138-139). Also (1 — «)100% simultaneous

confidence band for f{z) can be obtained by employing simulation-based approach of Ruppert et
al. (2003, 6.5)

The penalized spline model of Equation (3.1) can be estimated through a linear mixed model
formulation of Equation (3.2)

Q:X§+Zg+g, (3.2)
1a; 22
1 CE; :Bé (.‘231 — /il)i (1‘1 — KK)_Q*,
7 . . . U .
whereg-(y],...,yn),”gis.. S ’anK_‘ : . : ,Cm(LDW
1z g2 (@n— k)i .o (@0 —Kx):

o B o , ,
["0 Gy | B= 8L u=(u, . uk) andy ~ N (X, 0222 +021).
We introduce some more notations to outline the best linear unbiased prediction(BLUP) procedure
of f and a simultaneous confidence band of f.
Let 1X,3 = {1,x,x2],, Z,h =[x - r)2,. .. (z —rr)2] and f(z) = Xz8 + Z.1, where § and 4 are
X IxX K

the BLUP of 8 and u. 8 and @ contain parameters o2 and o2, which are typically estimated via
maximum likelihood (ML) or restricted maximum likelihood(REML) method. We plug in the ML or
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REML estimates of 02 and o2 in 8 and 4 and then refer to 3 and 4 as estimated BLUP(EBLUP).
The f(z) is the BLUP of f(z) = X.8 + Z.u and f(z) = Xz8 + Zs0 becomes the corresponding
EBLUP of f(z). Following the procedure of Ruppert et al. (2003, 6.4) and Henderson (1975)
one can derive the standard deviation of f(z) — f(z) as in Equation (3.3) using the unconditional
distribution of Y rather than the conditional distribution of Y|u.

— s 52 \ !
st.dev { HO f(x)} = aa\/ Ce <c’c + Z—%D) c, (3.3)
where C =[X,Z], C. =[X:, 2] D = diag(0,0,0,1,...,1).
nx(K+3) 1x (K+3) (K+3)x (K+3)

Therefore, approximate (1 — &)100% pointwise confidence interval for f(z) is obtained for large n
as in Equation (3.4) :
f@) £ 2_g stdev { HO f(a:)} , (3.4)
where z1_4/7 indicates (1 — a/ 2)100” percentile of the standard normal distribution.

Now, the simultaneous confidence band of f can be obtained straightforwardly using the simulation-
based approach. Suppose we would like to have a simultaneous confidence band for f over a grid
of M x-values, say g = (g1,-..,9a)- Let fo = (f(g1),.. .,f(gM))' be the true function over g and

let f s denote the corresponding EBLUP based on the quadratic penalized spline of Equation (3.1)

formulated in the linear mixed model. Following Ruppert et al. (2003, 6.5) we define a (1 —)100%
simultaneous confidence band(SCB) for f, as in Equation (3.5).

m{f(!]l) - f(gl)}
fo ki : -, (3.5)
st.dev { flan) = f(9nr) }

where m1_q is the (1 — @)™ quantile of the random variable in Equation (3.6),

A 2]
/\f(:v)A mAC) 2 max |———F : , (3.6)
sex|Stdev { f(o) - f(2) } | S=M | stdev { fla) — f(9)}
where x denotes the set of z values of interest and C; = (l, g, 9% (g—rD3,....,(g— nKl)ﬁ_) .
Mx(K+3) - =

The quantile Mi—_o can be approximated by simulation. One can compute the corresponding values
of Equation (3.6) for a large number of time, say N = 10,000. The N simulated values are sorted
in the ascending order and the one with rank [(1 — @)N] is used as mi_q, where [z] denotes the
smallest integer greater than or equal to z.

4. Results

4.1. Recurrent copy number alterations from regions of gain/loss in gastric cancer

We applied the simultaneous confidence band(SCB) method to the gastric cancer data set together
with GLAD procedure. We found that the SCB method was more sensitive in detecting DNA. copy
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number alterations(CNAs) than the GLAD procedure. A recurrent CNA in a cohort of patients
is defined to be a CNA found at the same location in multiple samples (Shah et al., 2007). One
simple strategy to identify a recurrent CNA is to infer recurrent CNAs using a threshold frequency of
occurrence. Figure 4.1 shows the number of detected CNAs for the SCB and the GLAD procedures
as a function of the threshold frequency. For example, when we set four for the threshold of
the GLAD procedure there are about 2,000 CNAs which occurred at least four out of 30 gastric
cancers. To have approximately the same number of recurrent CNAs under the SCB procedure, we
set twelve for the threshold of the SCB. The determination of recurrent CNAs and the biological
significance of its finding, in general, and in this data set, in particular, will be discussed in a
separate communication.

The two procedures, GLAD and SCB can be compared in terms of overlapping CNAs in a Venn
diagram of Figure 4.2. The two procedures jointly picked up approximately 40% of the total CNAs.
The area B of Figure 4.2 Venn diagram represents CNAs detected by the SCB method, but not by
the GLAD procedure. The area C of Figure 4.2 shows CNAs detected by the GLAD, but not by
the SCB. We found that CNAs in the area B of Figure 4.2 had a characteristic of having relatively
low copy nurnbers alterations in absclute value such that the GLAD procedure didn’t pick up.

Figure 4.3 shows a typical plot of a array-CGH for which the SCB method picked up quite a
few regions of gain, but the GLAD procedure didn’t detect any. The dark curve and the light
gray band around the curve in Figure 4.3a represent the estimated regression curve and the 95%
SCB, respectively. The region for which the SCB stays over the horizonal line at logratio=20
corresponds to the region of genetic gain. The SCB method could pick up low DNA copy number
alterations(CNAs) as in Figure 4.3a, but the GLAD procedure didn’t detect them as one can see
in Figure 4.3b. In Figure 4.3b empty dots represent the normal copy numbers and all genes are
represented by the empty dots, which mean that GLAD dose not detect any region of gain/loss. In
the GLAD plot regions of gain and loss are represented by dots of black and light gray, respectively,
as one can find in Figure 4.4b and a normal region is shown by as in Figure 4.3b an empty dot.

We also observed that in area C for which the SCB procedure was less sensitive than the GLAD
procedure clones were rather sparse as one could typically found in Figure 4.4. In Figure 4.4a there
were not many clones up to one sixth of the chromosome, which contributed the large variance
of the simultaneous confidnence band, where as in Figure 4.4b the GLAD procedure picked up
the same region as the region of gain (black dots). The dotted vertical lines in Figure 4.4b show
demarcations between regions of different characteristic. The solid horizonal line in each region
represent the mean logratio. Black dots show the region of gain, and dots with light gray exhibit

the region of loss. We can see in Figure 4.4b that the GLAD picked up two regions of gain and a
region of loss.

4.2. Comparison with GLAD and HMM

We conducted a simulation study and generated 20 data sets. Each data set was generated under
independence, AR(1) and AR(2) following Huang et al. {2005). However, the true log2 ratios
of regions of gain/loss have smaller jump sizes in our simulation. We assumed 0.2~0.25 for the
jump size in chromosome 1 to 11 and 0.1~0.15 in chromosome 12 to 23. Table 4.1 shows the false
discovery rates(FDR), true positive and false positive rates averaged over the 20 data sets for three
procedures, namely GLAD, HMM and SCB procedures.

We note from Table 4.1 that the SCB outperforms the GLAD and the HMM in terms of FDR and
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Figure 4.1. The number of detected DNA copy number alterations(CNAs) in multiple samples as a function of the threshold
frequency.
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Figure 4.2. The number of DNA copy number alterations(CNAs) that are detected by either GLAD or SCB procedure.

the true positive rates, particularly in chromosomes 12 to 23 which have small jump sizes, namely
0.1~0.15. We may note that the performance measures(i.e., FDR: true positive rates and false
positive rates) of GLAD and SCB methods are rather stable in all three models of independence,
AR(1) and AR(2). As a means of implementing spatial dependence along the contiguous regions
in a chromosome, we generated simulated data from AR(1) and AR(2). It turned out that the
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Figure 4.3. Comparison between the SCB method and the glad procedure. The SCB is more sensitive in detecting low DNA
copy number alterations. Figure 4.3a shows an estimated regression curve and its 95% SCB. Figure 4.3b represents an output of

the GLAD procedure.
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Figure 4.4. Comparison between the SCB method and glad procedure. The SCB method failed to detect the region of gain in
an area where not many clones were spotted. Figure 4.4a shows an estimated regression curve and its 95% SCB. Figure 4.4b

represents an output of the GLAD procedure.
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Table 4.1. Comparison of three procedures: GLAD, HMM and simultaneous confidence band(SCR)

FDR
Independence AR(1) AR(2)
Ch1-Ch11]|Ch12-Ch23]Overall | Ch1-Ch11[Ch12-Ch23[Overall | Ch1-Ch11]Ch12-Ch23]Overall
GLAD| 00049 01316  0.0417| 0.0061 0.119 0.04 | 0.0081 0089  0.0316
HMM | 02254 02272 0.2393 | 0.2258 02392 02603 | 04874  0.3708  0.4301
SCB | 0.0743 0.087  0.0803] 0.076 0.0833  0.0791 | 0.0671 0.0835  0.0743
true positive rates
Independence AR(1) AR(2)
Ch1-Ch11[Ch12-Ch23]Overall | Ch1-Ch11][Ch12-Ch23] Overall | Ch1-Ch11] Ch12-Ch23 [ Overall
GLAD]| 0.6598 02092 04539 | 0.7249  0.2204 04943 | 0.6271 01896  0.4272
HMM | 0.0733 0232 0.1458 [ 0.0811 0.2007  0.1358 | 0.3085 0.3124  0.3103

SCB 0.7902 0.6921 0.7453 | 0.7945 0.6675 0.7365 | 0.7964 0.6636 0.7357

false positive rates

Independence AR(1) AR(2)
Ch1-Ch11]Ch12-Ch23][Overall | Ch1-Ch11]Ch12-Ch23] Overall [ Ch1-Ch11[Ch12-Ch23|Overall
GLAD[ 0.0024 0.038¢  0.0161] 0.0031 0.0454  0.0191 | 0.0036 0.0238  0.0113
HMM | 0.0224 00722 0.0413] 0.0286 0.0676  0.0434| 0.1973 0.1674  0.1859
SCB | 0.0451 0.0648  0.0525 | 0.0461 0.0593  0.0511] 0.0408 0.0598  0.0481

GLAD and the SCB methods were robust in the transition from independence model to AR(1) and
to AR(2) models. We also note that the HMM shows lower performance in term of FDR and true
positive rates and the false positive rate of HMM turns out unstable in the transition of AR(1)
to AR(2) model. We observe that the type I error rate of the SCB is quite stable around the
nominal level of 0.05. For chromosomes 1 to 11 which have jump sizes 0.2~0.25 the GLAD and the
SCB procedures trade off the FDR and the false positive rates, and we may judge that these two
procedures are comparable in chromosomes 1 to 11.

5. Discussions

In this paper we proposed a new approach, namely, the penalized spline based simultaneous confi-
dence band(SCB) approach for detecting regions of gain/loss in an array CGH experiment data set.
We first applied the simultaneous confidence band-based procedure to array-CGH data of 30 gastric
cancer patients. We found that it could detect more regions of gain/loss than GLAD procedure.
When we compared the performance of this procedure with GLAD and HMM based procedures,
we learned that our procedure turned out to be more sensitive in detecting regions of gain/loss of
which the jump sizes are small. Furthermore, it turned out that the SCB method exhibited stable
type I error probability in the transition from the independence model to AR(1) and to AR(2),
whereas neither the GLAD nor the HMM method enjoyed this property.

The SCB procedure yielded more regions of gain/loss than the GLAD procedure. It was not
uncommon that different statistical methods detected different number of regions of gain/loss in
the array-CGH experiment. We went around this unequal numbers by equalizing the number of
recurrent CNAs of both procedures, which was possible by tuning the threshold frequency. However,
determining a recurrent CNA would comprise another important statistical issue and remains a
further research topic. In particular to the gastric cancer data set the biological significance of
CNA’s in area B and C of Figure 4.2 is yet to be evaluated by further research.
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