References
- Cantoni, E. and Ronchetti, E. (2001). Resistant selection of the smoothing parameter for smoothing splines, Statistics and Computing, 11, 141-146. https://doi.org/10.1023/A:1008975231866
- Davies, L. and Gather, U. (1993). The identification of multiple outliers (with discussion), Journal of the American Statistical Association, 88, 782-801. https://doi.org/10.1080/01621459.1993.10476339
- Gentleman, J. F. and Wilk, M. B. (1975). Detecting outliers.II.Supplementing The Direct Analysis of Residuals, Biometrics, 31, 387-410. https://doi.org/10.2307/2529428
- Hadi, A. S. and Simonoff, J. S. (1993). Procedures for the Identification of Multiple Outliers in Linear Models, Journal of the American Statistical Association, 88, 1264-1272. https://doi.org/10.1080/01621459.1993.10476407
- Hoeting, J., Raftery, A. E. and Madigan, D. (1996). A method for simultaneous variable selection and outlier identification in linear regression, Computational Statistics & Data Analysis, 22, 251-270. https://doi.org/10.1016/0167-9473(95)00053-4
- Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo, Annals of Statistics, 1, 799-821. https://doi.org/10.1214/aos/1176342503
- Kianifard, F. and Swallow, W. H. (1989). Using recursive residuals, calculated on adaptively-ordered observations, to identify outliers in linear regression, Biometrics, 45, 571-585. https://doi.org/10.2307/2531498
- Kovac, A. and Silverman, B. W. (2000). Extending the scope of wavelet regression methods by coefficient dependent thresholding, Journal of the American Statistical Association, 95, 172-183. https://doi.org/10.1080/01621459.2000.10473912
- Lee, T. C. M. and Oh, H.-S. (2007). Robust penalized regression spline fitting with application to additive mixed modeling, Computational Statistics, 22, 159-171. https://doi.org/10.1007/s00180-007-0031-6
- Marasinghe, M. G. (1985). A Multistage procedure for detecting several outliers in linear regression, Technometrics, 27, 395-399. https://doi.org/10.1080/00401706.1985.10488078
- Neter, J., Wasserman, W. and Kutner, M. H. (1990). Applied Linear Statistical Models (3rd ed.), Richard D. Irwin, Homewood.
- Rousseeuw, P. J. (1984). Least median of squares regression, Journal of the American Statistical Association, 79, 871-880. https://doi.org/10.1080/01621459.1984.10477105
- Ruppert, D. and Wand, M. P. (2003). Semiparametric Regression, Cambridge University Press, Cambridge.