• Title/Summary/Keyword: peak shaving

Search Result 50, Processing Time 0.023 seconds

한국의 다목적댐 수력발전 체계 - 투자의 정당화와 경제적 운영 - (Hydro-electric Power Generation System of Multi-purpose Dams in Koresa - A Framework for Investment Justification and Economic Operation -)

  • 이승규;박용삼
    • 경영과학
    • /
    • 제12권1호
    • /
    • pp.157-173
    • /
    • 1995
  • Hydro-electric power generation from multi-purpose dams has been playing important roles in the electric power supply network in Korea. Although the total share of hydro power in national electricity supply now becomes very small, the peak-shaving and frequency control capability of hydro power helps the power company enormously in maintaining the quality of power. But since the company that builds and operates the multi-purpose dams in Korea has to sell all the electricity produced to the monopolistic utility, there have been various problems in justifying the investment, designing pricing mechanism, and controlling operations of the power plants. In addition, economic evaluation of the hydro power has been distorted by a variety of reasons and hence it has been very difficult to encourage effective development and utilization of national water resources. To make the problem worse, both parties are public companies with X-inefficiency problems. Thus, changing environment requires to reengineer the system that governs hydro power generation. We address the problems of Korean hydro-electric power generation system in four areas: the investment justification process, the operations decison right of the hydro power plants, the pricing of the purchased-power, and the negotiation of contract revision. Then we propose improvement directions of new hydro-electric power system in view of static and dynamic efficiency, X-inefficiency and equity.

  • PDF

계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석 (Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System)

  • 김슬기;전진홍;조창희;안종보
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

기온 데이터를 이용한 하계 단기전력수요예측 (Short-term Electric Load Forecasting for Summer Season using Temperature Data)

  • 구본길;김형수;이흥석;박준호
    • 전기학회논문지
    • /
    • 제64권8호
    • /
    • pp.1137-1144
    • /
    • 2015
  • Accurate and robust load forecasting model is very important in power system operation. In case of short-term electric load forecasting, its result is offered as an standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve forecasting accuracy. In order to achieve accurate forecasting result for summer season, this paper proposes a forecasting model using corrected effective temperature based on Heat Index and CDH data as inputs. To do so, we establish polynomial that expressing relationship among CDH, load, temperature. After that, we estimate parameters that is multiplied to each of the terms using PSO algorithm. The forecasting results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows more accurate by 1.018%, 0.269%, 0.132% than comparison groups, respectively.

배전계통에 연계된 전지전력저장시스템의 유.무효전력 제어 (Active and Reactive Power Control of the Battery Energy Storage System interconnected with Power Distribution System)

  • 김재철;문선호;최준호;김응상
    • 조명전기설비학회논문지
    • /
    • 제13권4호
    • /
    • pp.127-133
    • /
    • 1999
  • 본 논문은 배전계통에 전지전력저장시스템(Battery Energy Storage System: BESS)를 연계하여 운전하는 경우 BESS의 유.무효전력 제어에 대하여 연구하였다. BESS을 배전계통에 연계하는 경우, 이의 유.무효전력 출력을 제어함으로써 배전계통에 일정 전력을 공급, 첨두 부하를 삭감하고 전압을 보상할 수 있다. 본 논문에서는 배전계통과 전지전력저장시스템을 등가 모델링 하였고 전지전력저장시스템의 유.무효 전력제어를 위한 전력 조류 방정식을 제시하였다. 본 논문에서는 BESS의 유.무효전력을 제어하기 위하여 $P-\delta$와 Q-V 제어를 사용하였고 이를 입증하기 위하여 BESS의 유.무효전력 제어를 PSCAD/EMTDC 프로그램을 이용하여 시뮬레이션 하였다.

  • PDF

도시철도 부하특성을 고려한 ESS의 최적 운영방안 연구 (Study on the Optimal Operation of ESS Considering Urban Railway Load Characteristic)

  • 허재행;신승권;박종영;김형익
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1508-1516
    • /
    • 2015
  • This paper proposes the optimal operation of ESS (Energy Storage System) in the substation of urban railway in an economical point of view. Since the load patterns of urban railway have different characteristics with the general power demand pattern, the characteristics motivate us to develop the optimal operation algorithm for ESS under Korean electricity billing system. We also introduce two different ESS operation strategies for peak load shaving and electricity consumption charge minimization respectively, and formulate each scheme. Historical data from Namgwangju substation are used for economical comparison of the strategies. The results show that the proposed algorithm is the most cost-effective ESS operation scheme among the strategies and reduces around 5 percent of electric charges compared to the charge without ESS operation.

지역난방 급탕공급 부하균등화를 위한 잠열축열조의 현장 적용 (Field Application of a Latent Heat Storage Tank for Load Shaving of Domestic Hot Water Supply in District Heating)

  • 박성용;유호선
    • 플랜트 저널
    • /
    • 제17권2호
    • /
    • pp.42-47
    • /
    • 2021
  • 지역난방의 운영적 측면에서 특정시간의 피크부하 완화를 통한 효율적인 열생산과 공급 및 지역난방 공급 중단 시 급탕 공급은 난방 대비 대체가 어려워 사용자 측면의 불편함과 공급자 측면의 애로사항을 해결할 수 있는 적용 기술이 요구되고 있다. 본 연구에서는 이러한 문제점을 해결할 수 있는 기술 중 열저장 능력과 급탕공급에 적합한 78℃급 수화물계 잠열축열조를 제작하여 지역난방 사용자 아파트 급탕공급설비에 현장 적용하였다. 본 시스템의 적용 결과 기존 공급방식 대비 급탕온도의 변화가 거의 없이 일정하게 사용자에게 공급됨을 확인하였으며, 피크 열부하는 평균 35% 감소와 비상열원으로서의 활용 가능성을 확인하였다. 또한 부하균등화에 따른 피크부하 감소로 기존 열 공급시설에서 10%의 열공급 여유와 신규 열공급시설 건설비용 및 열사용자의 공사비부담금이 각 5%와 10%가 감소됨을 확인하였다.

수용가용 전력저장시스템의 경제성분석에 관한 연구 (A Study on the Economic Analysis of the Energy Storage System in Customer)

  • 김정호;장준오
    • 신재생에너지
    • /
    • 제10권3호
    • /
    • pp.47-54
    • /
    • 2014
  • Recently, BESS is considered as one of essential countermeasure for demand side management. However, an economic evaluation is critical issue for the introduction of power system because the cost of BESS is very high in present stage. Therefor, this paper presents economic evaluation method for customer use case by considering peak shaving function based on the real time price. From the case study on the model power system and educational customer, it is confirmed that the proposed method is a practical tool for the economic analysis of BESS. and analytical approach for the reliability assessment in radially operated distribution systems. The approach can estimate the expected reliability performance of distribution systems by a direct assessment of the configuration of the systems using the reliability indexes such as NDP (Non-Delivery Power) and NDE (Non-Delivery Energy). The indexes can only consider the number and configuration of the load, but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, this paper presents the new performance indexes for the investment of the distribution facilities considering both the expected interruption cost for the load section and the operation characteristics of Energy Storage System. The results from a case study show that the proposed methods can be a practical tool for the reliability management in distribution systems including Energy Storage System.

도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험 (Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway)

  • 정호성;신승권;김형철;박종영
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

주파수조정용 배터리 에너지저장장치 운전방법의 개발과 적용 (Development and Application of Operation Methods of Battery Energy Storage System for Frequency Regulation)

  • 임건표;박두용
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.57-61
    • /
    • 2015
  • Current research and development efforts and other projects for energy storage systems (ESS) have recently been gaining attention. This is due to the many applications where ESS, particularly batteries, can be used. Among these are peak shaving, frequency regulation, and stabilization of renewable energy output. KEPCO has completed the construction and demonstration of a 4-MW battery energy storage system (BESS) located in Jeju City to verify its practicability in the power grid. KEPCO Research Institute has also been developing technology for the commercialization of BESS, and has been conducting a trial run of a 52-MW ESS (28MW + 24MW of Seo-Anseong and Shin-Yongin substations) constructed in 2014 for frequency regulation. This paper discusses the development of operation methods, as well as an operation user interface, for the safe operation and monitoring of BESS used for frequency regulation in a power system. Included are operation and simulation methods for various normal and transient frequency situations that can be experienced by a power system. Also discussed are the results obtained after applying these methods to the 4-MW BESS and the 52-MW ESS, both used for frequency regulation. The technology in this paper will be applied to 500MW ESS for frequency regulation of KEPCO by 2017. It is expected that this technology helps a safe and reliable operation and control of ESS for frequency regulation through its continuous upgrade.

변동성 재생e 유연 대응을 위한 한국형 V2G 기술개발 (Korean V2G Technology Development for Flexible Response to Variable Renewable Energy)

  • 손찬;유승덕;임유석;박기준
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.329-333
    • /
    • 2021
  • V2G (Vehicle to Grid) technology for an EV (Electric Vehicle) has been assumed as so promising in a near future for its useful energy resource concept but still yet to be developed around the world for specific service purposes through various R&BD projects. Basically, V2G returns power stored in vehicle at a cheaper or unused time to the grid at more expensive or highly peaked time, and is accordingly supposed to provide such roles like peak shaving or load levelling according to customer load curve, frequency regulation or ancillary reserves, and balancing power fluctuation to grid from the weather-sensitive renewable sources like wind or solar generations. However, it has recently been debated over its prominent usage as diffusing EVs and the required charging/discharging infrastructure, partially for its addition of EV ownership costs with more frequent charging/discharging events and user inconvenience with a relative long-time participation in the previously engaged V2G program. This study suggests that a Korean DR (Demand Response) service integrated V2G system especially based upon a dynamic charge/pause/discharge scheme newly proposed to ISO/IEC 15118 rev. 2 can deal with these concerns with more profitable business model, while fully making up for the additional component (ex. battery) and service costs. It also indicates that the optimum economic, environmental, and grid impacts can be simulated for this V2G-DR service particularly designed for EV aggregators (V2G service providers) by proposing a specific V2G engagement program for the mediated DR service providers and the distributed EV owners.