• Title/Summary/Keyword: peak current

Search Result 1,752, Processing Time 0.03 seconds

Fabrication and Characterization of Blue OLED using TMP-BiP Host and DJNBD-1 Dopant (TMP-BiP 호스트와 DJNBD-1 도펀트를 이용한 청색 OLED의 제작과 특성평가)

  • Chang, Ji-Geun;Ahn, Jong-Myoung;Shin, Sang-Baie;Chang, Ho-Jung;Gong, Su-Choel;Shin, Hyun-Kwan;Gong, Myung-Sun;Lee, Chil-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.19-23
    • /
    • 2007
  • The blue emitting OLEDs using TMP-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl) phosphonate] host and DJNBD-1 dopant have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum thermal evaporation method. Followed by the deposition, blue color emission layer was deposited using TMP-BiP as a host material and DJNBD-1 as a dopant. Finally, small molecule OLEDs with structure of $ITO/2-TNATA/NPB/TMP-BiP:DJNBD-l/Alq_3/LiF/Al$ were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. The effect of dopant into host material of the blue OLEDs was studied. The blue OLEDs with DJNBD-1 dopant showed that the maximum current and luminance were found to be about 34 mA and $8110\;cd/m^2$ at 11 V, respectively. In addition, the color coordinate was x=0.17, y=0.17 in CIE color chart, and the peak emission wavelength was 440 nm. The maximum current efficiency of 2.15 cd/A at 7 V was obtained in this experiment.

  • PDF

Evaluation of Durability for Al Alloy with Anodizing Condition (알루미늄 합금의 양극산화 조건에 따른 내구성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

A PVT-compensated 2.2 to 3.0 GHz Digitally Controlled Oscillator for All-Digital PLL

  • Kavala, Anil;Bae, Woorham;Kim, Sungwoo;Hong, Gi-Moon;Chi, Hankyu;Kim, Suhwan;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.484-494
    • /
    • 2014
  • We describe a digitally controlled oscillator (DCO) which compensates the frequency variations for process, voltage, and temperature (PVT) variations with an accuracy of ${\pm}2.6%$ at 2.5 GHz. The DCO includes an 8 phase current-controlled ring oscillator, a digitally controlled current source (DCCS), a process and temperature (PT)-counteracting voltage regulator, and a bias current generator. The DCO operates at a center frequency of 2.5 GHz with a wide tuning range of 2.2 GHz to 3.0 GHz. At 2.8 GHz, the DCO achieves a phase noise of -112 dBc/Hz at 10 MHz offset. When it is implemented in an all-digital phase-locked loop (ADPLL), the ADPLL exhibits an RMS jitter of 8.9 ps and a peak to peak jitter of 77.5 ps. The proposed DCO and ADPLL are fabricated in 65 nm CMOS technology with supply voltages of 2.5 V and 1.0 V, respectively.

Design of the Low-Power Continuous-Time Sigma-Delta Modulator for Wideband Applications (광대역 시스템을 위한 저전력 시그마-델타 변조기)

  • Kim, Kunmo;Park, Chang-Joon;Lee, Sanghun;Kim, Sangkil;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • In this paper, we present the design of a 20MHz bandwidth 3rd-order continuous-time low-pass sigma-delta modulator with low-noise and low-power consumption. The bandwidth of the system is sufficient to accommodate LTE and other wireless network standards. The 3rd-order low-pass filter with feed-forward architecture achieves the low-power consumption as well as the low complexity. The system uses 3bit flash quantizer to provide fast data conversion. The current-steering DAC achieves low-power and improved sensitivity without additional circuitries. Cross-coupled transistors are adopted to reduce the current glitches. The proposed system achieves a peak SNDR of 65.9dB with 20MHz bandwidth and power consumption of 32.65mW. The in-band IM3 is simulated to be 69dBc with 600mVp-p two tone input tones. The circuit is designed in a 0.18-um CMOS technology and is driven by 500MHz sampling rate signal.

A Study on Spectrum Moment Estimation in an Acoustic Doppler Current Profiler (ADCP에서의 스펙트럼 모멘트 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1790-1795
    • /
    • 2013
  • The current velocity and turbulence information in each range cell can be obtained from the first and second Doppler spectrum moment estimates. However, the very widely used correlation method often called as the pulse-pair method has the inherent restrictions under the highly turbulent conditions since it does not satisfy the assumptions that the return Doppler spectrum should be symmetric and have a single peak value. Therefore, in this paper, the quality of pulse-pair estimates were compared with that of FFT estimates for problem analysis using various shapes of simulated Doppler spectra. It can be known that the pulse-pair method often yields meaningless results if the received signals are severely biased or multi-peak Doppler spectra in the Doppler frequency domain.

High Power Factor Converter for Electric Vehicle Chargers (전기자동차 충전기용 고역율 콘버어터 회로)

  • 김영민;이수원;모창호;유철로
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • Generally, various semiconductor switching devices for power systems are used in battery chargers for electric vehicle. When these used, it takes the problems of transient-current or distortion of waveforms in power systems near by battery chargers because of harmonics and large peak-current, low power factor, etc., caused by the non-linearity of these devices. Recently, power factor control, line current peak-cut, harmonics reduction which was ignored in past is more and more important. In this paper, to solve those problems we will improve the characteristics of voltage rising and propose the high power factor converter circuit for battery chargers. Our proposed system convert commutated voltage to AC resonant wave in high frequency inverter and rectify the link voltages passed high-frequency transformer and transfer the DC voltages. Especially, the effect using these converter system can be improved very large by power factor control and we have to verify the possibilities of improvement through the experiment of Pb-Acid battery application.

  • PDF

Application Method and EMTP-RV Simulation of Series Resonance Type Fault Current Limiter for Smart Grid based Electrical Power Distribution System (스마트 그리드 배전계통을 위한 직렬 공진형 한류기 적용 방법 및 EMTP-RV 시뮬레이션 연구)

  • Yun-Seok Ko;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.361-370
    • /
    • 2024
  • In this paper, a method was studied for applying a series resonant type fault current limiter that can be manufactured at low cost to the smart grid distribution system. First, the impact of the harmonic components of the short-circuit fault current injected into the series resonance circuit of the fault current limiter on the peak value of the transient response was analyzed, and a methodology for determining the steady-state response was studied using percent impedance-based fault current computation method. Next, the effectiveness of the method was verified by applying it to a test distribution line. The test distribution system using the designed current limiter was modeled using EMTP_RV, and a three-phase short-circuit fault was simulated. In the fault simulation results, it was confirmed that the steady-state response of the fault current accurately followed the design target value after applying the fault current limiter. In addition, by comparing the fault current waveform before and after applying the fault current limiter, it was confirmed that the fault current was greatly suppressed, confirming the effect of applying the series resonance type current limiter to the distribution system.

A Compact and Fast Measurement System for the Detection of Small Capacitance

  • Youngshin Woo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • A new technique to measure low level capacitance variations of a gyroscope is proposed. It is based on the improved CVC(capacitance to voltage converter) biased by a d.c. current source and the peak detector without any low pass filter. This setup of the measurement system makes it possible to provide higher speed of measurement and wide operation range. The d,c, drift of the conventional CVC and stray capacitances are automatically compensated. Key parameters that affect the performance of the measurement system are illustrated and computer simulation results are presented. The demonstrated measurement system for micromachined gyroscope applications shows a linearity of 0.99972 and a resolution of 0.67fF from 10 fF to 120 fF at 10 kHz.

  • PDF

Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline

  • Beitollahi, Hadi;Tajik, Somayeh;Alizadeh, Reza
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • In this paper we report an electrochemical sensor based on ZnO-functionalized graphene oxide nanocomposite (ZnO-GO) for the sensitive determination of the cabergoline. Cabergoline electrochemical behaviors were investigated by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). The modified electrode shows electrocatalytic activity toward cabergoline oxidation in phosphate buffer solution (PBS) (pH 7.0) with a reduction of the overpotential of about 180 mV and an increase in peak current. The DPV data showed that the obtained anodic peak currents were linearly dependent on the cabergoline concentrations in the range of $1.0-200.0{\mu}M$, with the detection limit of $0.45{\mu}M$. The prepared electrode was successfully applied for the determination of cabergoline in real samples.

Electrochemical Investigation of Bovine Hemoglobin at an Acetylene Black Paste Electrode in the Presence of Sodium Dodecyl Sulfate

  • Zhan, Guoqing;Li, Chunya;Luo, Dengbai
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1720-1724
    • /
    • 2007
  • Electrochemical behaviors of bovine hemoglobin (Hb) at an acetylene black paste electrode based on the enhancement effect of sodium dodecyl sulfate (SDS) were investigated. In the optimal conditions, a very weak reduction peak was observed at an acetylene black paste electrode for hemoglobin in the absence of SDS. However, the reduction peak current increased remarkably after the addition of 4.0 × 10?4 mol L?1 SDS, suggesting that SDS exhibits obvious enhancement effect to the determination of hemoglobin. All the experimental parameters, such as pH value, concentration of SDS, accumulation time and accumulation potential were optimized for hemoglobin analysis. The proposed method possesses high sensitivity (detection limit is 3.0 × 10?9 mol L?1), wide linearity (6.0 × 10?9 to 6.0 × 10?7 mol L?1), rapid response and low cost. Finally, the method was successfully employed to determine hemoglobin in a spiked sample.