DOI QR코드

DOI QR Code

Electrochemical Investigation of Bovine Hemoglobin at an Acetylene Black Paste Electrode in the Presence of Sodium Dodecyl Sulfate

  • Zhan, Guoqing (College of Chemistry and Materials Science, South-Central University for Nationalities) ;
  • Li, Chunya (College of Chemistry and Materials Science, South-Central University for Nationalities) ;
  • Luo, Dengbai (College of Chemistry and Materials Science, South-Central University for Nationalities)
  • Published : 2007.10.20

Abstract

Electrochemical behaviors of bovine hemoglobin (Hb) at an acetylene black paste electrode based on the enhancement effect of sodium dodecyl sulfate (SDS) were investigated. In the optimal conditions, a very weak reduction peak was observed at an acetylene black paste electrode for hemoglobin in the absence of SDS. However, the reduction peak current increased remarkably after the addition of 4.0 × 10?4 mol L?1 SDS, suggesting that SDS exhibits obvious enhancement effect to the determination of hemoglobin. All the experimental parameters, such as pH value, concentration of SDS, accumulation time and accumulation potential were optimized for hemoglobin analysis. The proposed method possesses high sensitivity (detection limit is 3.0 × 10?9 mol L?1), wide linearity (6.0 × 10?9 to 6.0 × 10?7 mol L?1), rapid response and low cost. Finally, the method was successfully employed to determine hemoglobin in a spiked sample.

Keywords

References

  1. Arndt, M. H. L.; de Oliveira, C. L. P.; Regis, W. C. B.; Torriani, I. L.; Santoro, M. M. Biopoly. 2003, 69, 470 https://doi.org/10.1002/bip.10367
  2. Bonaventura, J.; Bonaventura, C.; Sullivan, B. J. Experiment. Zool. 1975, 194, 155 https://doi.org/10.1002/jez.1401940110
  3. Cordone, L.; Cupane, A.; Sandro, L. Biopoly. 1983, 22, 1677 https://doi.org/10.1002/bip.360220706
  4. Wells, C. W.; Lewis, S.; Barton, J. R.; Corbett, S. Inflamm. Bowel Dis. 2006, 12, 123 https://doi.org/10.1097/01.MIB.0000196646.64615.db
  5. Ruan, P.; Huang, Y. X.; Li, D. Spectrosc. Spect. Anal. 2005, 25, 1121
  6. Cruz-Landeira, A.; Bal, M. J.; Quintela, O.; Lopez-Rivadulla, M. J. Anal. Toxic. 2002, 6, 67
  7. Yang, X. F.; Guo, X. Q.; Li, H. Talanta 2003, 61, 439 https://doi.org/10.1016/S0039-9140(03)00306-0
  8. Quickenden, T. I.; Cooper, P. D. Luminescence 2001, 16, 251 https://doi.org/10.1002/bio.635
  9. van Bommel, M. R.; de Jong, A. P. J. M.; Tjaden, U. R.; Irth, H.; van der Greef, J. J. Chromatogr. A 2000, 886, 19 https://doi.org/10.1016/S0021-9673(00)00481-7
  10. Huisman, T. H. J. Anal. Chim. Acta 1997, 352, 187 https://doi.org/10.1016/S0003-2670(97)00088-3
  11. D'Antonio, E. L.; Rickard, L. H. Abstracts of Papers of the American Chemical Society 2004, 227, U612-U612 755-Ched Part 1
  12. Bao, X.; Zhu, Z.; Li, N. Q.; Chen, J. Talanta 2001, 54, 591 https://doi.org/10.1016/S0039-9140(00)00667-6
  13. Liu, M.; Shi, G.; Zhang, L.; Cheng, Y.; Jin, L. Electrochem. Commun. 2006, 8, 305 https://doi.org/10.1016/j.elecom.2005.11.026
  14. Zhang, C. L.; Liu, M. C.; Li, P.; Xian, Y. Z.; Cheng, Y. X.; Zhang, F. F.; Wang, X. L.; Jin, L. T. Chin. J. Chem. 2005, 23, 144 https://doi.org/10.1002/cjoc.200590144
  15. Fan, C. H.; Li, G. X.; Zhuang, Y. Electroanal. 2000, 12, 205 https://doi.org/10.1002/(SICI)1521-4109(200002)12:3<205::AID-ELAN205>3.0.CO;2-Y
  16. Brett, C. M. A.; Inzelt, G.; Kertesz, V. Anal. Chim. Acta 1999, 385, 119 https://doi.org/10.1016/S0003-2670(98)00808-3
  17. Li, G. X.; Chen, H. Y.; Zhu, D. X. J. Inorg. Biochem. 1996, 63, 207 https://doi.org/10.1016/0162-0134(95)00217-0
  18. Yang, X. F.; Zhang, H. J. Food Chem. 2007, 102, 1223 https://doi.org/10.1016/j.foodchem.2006.07.010
  19. Yang, X. F.; Wang, F.; Hu, S. S. Colloids Surf. B: Biointerfaces 2007, 54, 60 https://doi.org/10.1016/j.colsurfb.2006.09.003
  20. Sun, D.; Zhang, H. J. Water Res. 2006, 40, 3069 https://doi.org/10.1016/j.watres.2006.06.031
  21. Li, G.; Ji, Z. M.; Wu, K. B. Anal. Chim. Acta 2006, 577, 178 https://doi.org/10.1016/j.aca.2006.06.061
  22. Zhang, H. J. Bioelectrochem. 2006, 68, 197 https://doi.org/10.1016/j.bioelechem.2005.07.001
  23. Xie, P. P.; Chen, X. X.; Wang, F.; Hu, C. G.; Hu, S. S. Colloids Surf. B: Biointerfaces 2006, 48, 17 https://doi.org/10.1016/j.colsurfb.2006.01.003
  24. Li, C. Y. Colloids Surf. B: Biointerfaces 2007, 55, 77 https://doi.org/10.1016/j.colsurfb.2006.11.009
  25. Chattopadhyay, K.; Mazumdar, S. Biochem. 2003, 42, 14606 https://doi.org/10.1021/bi0351662

Cited by

  1. Application of surfactants in voltammetric analysis vol.67, pp.11, 2012, https://doi.org/10.1134/S106193481211010X
  2. The effect of the gene carrier material polyethyleneimine on the structure and function of human red blood cells in vitro vol.1, pp.14, 2013, https://doi.org/10.1039/c3tb00024a
  3. Sensitive, label-free protein assay using 1-ethyl-3-methylimidazolium tetrafluoroborate-supported microchip electrophoresis with laser-induced fluorescence detection vol.29, pp.9, 2008, https://doi.org/10.1002/elps.200700499
  4. Investigation of Cyanocobalamin Interferences to an Electrochemical Based Hemoglobin Test System vol.44, pp.9, 2007, https://doi.org/10.1080/00032719.2010.520389
  5. Development of a photocatalytic zirconia-titania ultrafiltration membrane with anti-fouling and self-cleaning properties vol.9, pp.6, 2021, https://doi.org/10.1016/j.jece.2021.106671
  6. Corrosion resistant ZrO2/SiC ultrafiltration membranes for wastewater treatment and operation in harsh environments vol.41, pp.15, 2021, https://doi.org/10.1016/j.jeurceramsoc.2021.07.054