• Title/Summary/Keyword: partial differential equation

Search Result 393, Processing Time 0.022 seconds

"Leak Current" correction for critical current measurement of no-insulation HTS coil

  • Song, Jung-Bin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.48-52
    • /
    • 2017
  • Discrepancy between a power supply current and an actual "spiral" coil current makes the conventional 4-probe measurement of a critical current ($I_c$) of a no-insulation (NI) high temperature superconductor (HTS) coil inaccurate and time-consuming. This paper presents a fast and accurate approach for $I_c$ measurement of NI HTS coils. With an NI HTS coil energized at a constant ramping rate, a complete analytic expression for the spiral coil current was obtained from a first-order partial differential equation that derived from an equivalent circuit model of the NI coil. From the analytic solution, both spiral coil current and radial leak current can be obtained simultaneously, which enables fast and accurate measurement of the NI coil $I_c$. To verify the proposed approach, an NI double-pancake (DP) coil, wound with GdBCO tapes of $6mm{\times}0.1mm$, was constructed and its $I_c$ was repeatedly measured with various ramping rates in a bath of liquid nitrogen at 77 K. The measured results agreed well with the calculated ones, which validates the proposed approach to measure $I_c$ of an NI HTS coil.

Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current (등가자화전류를 이용한 최적코일형상 설계방법)

  • Kim, Woo-Chul;Kim, Min-Tae;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.

The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams

  • Lim, C.W.;Li, C.;Yu, J.L.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.223-233
    • /
    • 2009
  • This paper presents a new nonlocal stress variational principle approach for the transverse free vibration of an Euler-Bernoulli cantilever nanobeam with an initial axial tension at its free end. The effects of a nanoscale at molecular level unavailable in classical mechanics are investigated and discussed. A sixth-order partial differential governing equation for transverse free vibration is derived via variational principle with nonlocal elastic stress field theory. Analytical solutions for natural frequencies and transverse vibration modes are determined by applying a numerical analysis. Examples conclude that nonlocal stress effect tends to significantly increase stiffness and natural frequencies of a nanobeam. The relationship between natural frequency and nanoscale is also presented and its significance on stiffness enhancement with respect to the classical elasticity theory is discussed in detail. The effect of an initial axial tension, which also tends to enhance the nanobeam stiffness, is also concluded. The model and approach show potential extension to studies in carbon nanotube and the new result is useful for future comparison.

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow

  • Krvavica, Nino;Kozar, Ivica;Ozanic, Nevenka
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.95-109
    • /
    • 2018
  • The relevance of turbulent mixing in estuarine numerical models for stratified two-layer shallow water flows is analysed in this paper. A one-dimensional numerical model was developed for this purpose by extending an immiscible two-layer model with an additional source term, which accounts for turbulent mixing effects, namely the entrainment of fluid from the lower to the upper layer. The entrainment rate is quantified by an empirical equation as a function of the bulk Richardson number. A finite volume method based on an approximated Roe solver was used to solve the governing coupled system of partial differential equations. A comparison of numerical results with and without entrainment is presented to illustrate the influence of entrainment on both the salt-water intrusion length and lower layer dynamics. Furthermore, one example is given to demonstrate how entrainment terms may help to stabilize the numerical scheme and prevent a possible loss of hyperbolicity. Finally, the model with entrainment is validated by comparing the numerical results to field measurements.

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

Developing a Three-dimensional Spectral Model Using Similarity Transform Technique (유사변환기법을 이용한 3차원 모델의 개발)

  • Kang, Kwan-Soo;So, Jae-Kwi;Jung, Kyung-Tae;Sonu, Jung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.107-120
    • /
    • 1993
  • This paper presents a new modal solution of linear three-dimensional hydrodynamic equations using similarity transform technique. The governing equations are first separated into external and internal mode equations. The solution of the internal mode equation then proceeds as in previous modal models using the Galerkin method but with expansion of arbitrary basis functions. Application of similarity transform to resulting full matrix equations gives rise to a set of uncoupled partial differential equations of which the unknowns are coefficients of mode vector. Using the transform technique a computationally efficient time integration is possible. In present from the model use Chebyshev polynomials for Galerkin solution of internal mode equations. To examine model performance the model is applied to a homogeneous, rectangular basin of constant depth under steady, uniform wind field.

  • PDF

Simulation of Natural Gas and Pulverized Coal Combustion using 93-PCGC-2 (93-PCGC-2을 이용한 천연가스 연소와 미분탄 연소 모사)

  • 조석연;서경원;이진욱
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.50-55
    • /
    • 1995
  • 향상되어진 93-PCGC-2는 기존의 PCGC-2와 같이 미분탄 연소를 포함하는 다양한 반응성흐름과 비반응성 흐름을 설명하기 위해 2차원 정상상태 모델로 제시되어 졌다. 93-PCGC-2는 실린더형의 축 대칭계에 응용되어질 수 있고, 난류(Turbulence)는 유체역학식과 연소기구 양쪽을 위해 고려되어졌으며, 불연속 세로좌표 방법(Discrete Ordinates Method)을 이용하여 기체, 벽 및 입자들로부터의 복사열(Radiation)을 모사하였다. 입자상은 입자 무리들의 평균 경로들을 따라 해석하는 Lagrangian계의 해석법으로 모델화되어졌다. 석탄의 팽윤(Swelling)과 촤의 반응성에 관한 부모델과 더불어 새롭게 일반화된 석탄 탈휘발화 부모델 (FG-DVC)도 첨가되어졌다. 비균일 반응기구는 확산과 화학반응 둘 모두를 고려하였다. 주요 기상반응은 국부 순간 평형을 가정하여 모델화하였다. 그래서 반응속도는 혼합의 난류속도에 의해 제한되어진다. Thermal NOx과 Fuel NOx의 유한속도 화학론(Finite Rate Chemstry)에 대한 부모델은 화학반응속도론와 난류성의 통계치를 통합하여 만들어져 있다. 기상은 반복적인 line-by-line기교에 의해 풀려지는 elliptic partial differential equation으로 묘사되어진다. 수치적인 안정을 고려하기 위해 under-relaxation이 이용되어졌다. 이렇게 코드화된 93-PCGC-2는 연소를 위해 모사되어졌다. 또한 더 나아가 이 수치모델의 활용범위는 미분탄의 가스화에도 활용되어질 것으로 기대되어진다.

  • PDF

Objective Interpolation Of the $M_2$ Tide in the East Sea (객관적 방법에 의한 동해의 반일주조 조석도)

  • KANG Yong Q.;CHOI Seog-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.477-483
    • /
    • 1987
  • We constructed the tidal chart of $M_2$ tide in the East Sea (Japan Sea) by an objective method. The sea level elevations at coastal stations are specified as Dirichlet boundary conditions, and the tidal constants inside of the East Sea basin are determined by the solution of the complex partial differential equation for the sea surface elevation. We studied the influences of the bottom topography and the tidal friction on the distribution of tidal chart inside of the basin. Using the results of basin-wide tidal model, we constructed a detailed tidal chart of the Ma tide off east of Korea.

  • PDF

Topology Optimization of Shell Structures Using Adaptive Inner-Front(AIF) Level Set Method (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.157-162
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, in this regard, an inner-front creation algorithm is proposed. in which the sizes. shapes. positions, and number of new inner-fronts during the optimization process can be globally and consistently identified by considering both the value of a given criterion for inner-front creation and the occupied volume (area) of material domain. To facilitate the inner-front creation process, the inner-front creation map which corresponds to the discrete valued criterion of inner-front creation is applied to the level set function. In order to regularize the design domain during the optimization process, the edge smoothing is carried out by solving the edge smoothing partial differential equation (PDE). Updating the level set function during the optimization process, in the present work, the least-squares finite element method (LSFEM) is employed. As demonstrative examples for the flexibility and usefulness of the proposed method. the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF