References
- Cagin, T., Che, J.W., Gardos, M.N., Fijany, A. and Goddard, W.A. (1999), "Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application", Nanotechnology, 10(3), 278-284. https://doi.org/10.1088/0957-4484/10/3/310
- Chen, C.S., Wang, C.K. and Chang, S.W. (2008), "Atomistic simulation and investigation of nanoindentation, contact pressure and nanohardness", Interact. Multi. Mech., 1(4), 411-422. https://doi.org/10.12989/imm.2008.1.4.411
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Gao, J.G. and Zhao. Y.P. (2006), "Dynamic stability of electrostatic torsional actuators with van der Waals effect", Int. J. Solids Struct., 43(3-4), 675-685. https://doi.org/10.1016/j.ijsolstr.2005.03.073
- He, L.H., Lim, C.W. and Wu, B.S. (2004), "A continuum model for size-dependent deformation of elastic films of nano-scale thickness", Int. J. Solids Struct., 41(3-4), 847-857. https://doi.org/10.1016/j.ijsolstr.2003.10.001
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", Int. J. Solids Struct., 56(12), 3475-3485.
- Jonsson, L.M., Santandrea, F., Gorelik, Y.K., Shekhter, R.I. and Jonson, M. (2008), "Self-organization of irregular nanoelectromechanical vibrations in multimode shuttle structures", Phys. Rev. Lett., 100(18), 186802. https://doi.org/10.1103/PhysRevLett.100.186802
- Lim, C.W. (2008), "A discussion on the nonlocal elastic stress field theory for nanobeams", The 11th East Asia-Pacific Conference on Structural Engineering & Construction (EASEC-11), Taipei, November.
- Lim, C.W. and Wang, C.M. (2007), "Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams", J. Appl. Phys., 101(5), 054312. https://doi.org/10.1063/1.2435878
- Liu, Y.Z., Chen, W.L. and Chen, L.Q. (1998), Vibration Mechanics. Higher Education Press, Beijing.
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. https://doi.org/10.1063/1.2189213
- Mikkelsen, L.P. and Tvergaard, V. (1999), "A nonlocal two-dimensional analysis of instabilities in tubes under internal pressure", J. Mech. Phys. Solids, 47(4), 953-969. https://doi.org/10.1016/S0022-5096(98)00062-3
- Na, S., Librescu, L. and Shim, J.K. (2003), "Modeling and bending vibration control of nonuniform thin-walled rotating beams incorporating adaptive capabilities", Int. J. Mech. Sci., 45(8), 1347-1367. https://doi.org/10.1016/j.ijmecsci.2003.09.015
- Oz, H.R., Pakdemirli, M. and Boyaci, H. (2001), "Non-linear vibrations and stability of an axially moving beam with time-dependent velocity", Int. J. Nonlin. Mech., 36, 107-115. https://doi.org/10.1016/S0020-7462(99)00090-6
- Parker, R.G. and Orloske, K. (2006), "Flexural-torsional buckling of misaligned axially moving beams: vibration and stability analysis", Int. J. Solids Struct., 43(14-15), 4323-4341. https://doi.org/10.1016/j.ijsolstr.2005.08.015
- Reddy, J.N. and Wang, C.M. (1998), "Deflection relationships between classical and third-order plate theories", Acta Mech. Sinica, 130 (3-4), 199-208.
- Sato, M. and Shima, H. (2008), "Buckling characteristics of multiwalled carbon nanotubes under external pressure", Interact. Multi. Mech., 2(2), 209-222.
- Shibutani, Y., Vitek, V. and Bassani, J.L. (1998), "Nonlocal properties of inhomogeneous structures by linking approach of generalized continuum to atomistic model", Int. J. Mech. Sci., 40(2-3), 129-137. https://doi.org/10.1016/S0020-7403(97)00042-8
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. https://doi.org/10.1063/1.1625437
- Tounsi, A., Heireche, H., Berrabah, H.M., Benzair, A. and Boumia, L. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J. Appl. Phys., 104(10), 104310. https://doi.org/10.1063/1.3021158
- Unnikrishnan, V.U., Reddy, J.N., Banerjee, D. and Rostam-Abadi, F. (2008), "Thermal characteristics of defective carbon nanotube-polymer nanocomposites", Interact. Multi. Mech., 1(4), 397-409. https://doi.org/10.12989/imm.2008.1.4.397
- Wang, Y.F., Huang, L.H. and Liu, X.T. (2005), "Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics", Acta Mech. Sinica, 21, 485-494. https://doi.org/10.1007/s10409-005-0066-2
- Yakobson, B.I., Brabec, C.I. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Yu, J.L. (1985), "Progress and applications of solid mechanics considering microstructure", Adv. Mech., 15(1), 82-89.
- Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibration of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B., 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404
- Zhao, H. and Aluru, N.R. (2008), "Molecular dynamics simulation of bulk silicon under strain", Interact. Multi. Mech., 1(2), 303-315. https://doi.org/10.12989/imm.2008.1.2.303
Cited by
- Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment 2017, https://doi.org/10.1080/15376494.2017.1365982
- Chaos prediction in nano-resonators based on nonlocal elasticity theory vol.148, 2018, https://doi.org/10.1051/matecconf/201814807006
- Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method vol.22, pp.12, 2016, https://doi.org/10.1007/s00542-015-2662-9
- Is a nanorod (or nanotube) with a lower Young’s modulus stiffer? Is not Young’s modulus a stiffness indicator? vol.53, pp.4, 2010, https://doi.org/10.1007/s11433-010-0170-6
- A Variational Principle Approach for Vibration of Non-Uniform Nanocantilever Using Nonlocal Elasticity Theory vol.10, 2015, https://doi.org/10.1016/j.mspro.2015.06.087
- Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions vol.121, 2016, https://doi.org/10.1016/j.actaastro.2016.01.003
- Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads vol.49, 2013, https://doi.org/10.1016/j.matdes.2013.01.073
- Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.281
- Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
- Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory vol.48, pp.3, 2013, https://doi.org/10.12989/sem.2013.48.3.415
- Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method vol.24, pp.15, 2017, https://doi.org/10.1080/15376494.2016.1227499
- Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory vol.50, 2012, https://doi.org/10.1016/j.finel.2011.08.008
- Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam vol.122, pp.7, 2016, https://doi.org/10.1007/s00339-016-0196-3
- Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler–Bernoulli microbeams vol.83, 2016, https://doi.org/10.1016/j.physe.2016.04.011
- ANALYTICAL SOLUTIONS FOR VIBRATION OF SIMPLY SUPPORTED NONLOCAL NANOBEAMS WITH AN AXIAL FORCE vol.11, pp.02, 2011, https://doi.org/10.1142/S0219455411004087
- Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams vol.49, pp.11, 2011, https://doi.org/10.1016/j.ijengsci.2010.12.009
- Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method vol.23, pp.19, 2017, https://doi.org/10.1177/1077546315627723
- Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution 2017, https://doi.org/10.1080/15376494.2017.1285455
- Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams vol.21, pp.2, 2015, https://doi.org/10.1007/s00542-014-2110-2
- Nonlocal thermal-elasticity for nanobeam deformation: Exact solutions with stiffness enhancement effects vol.110, pp.1, 2011, https://doi.org/10.1063/1.3596568
- Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen’s nonlocal elasticity and DQM vol.122, pp.8, 2016, https://doi.org/10.1007/s00339-016-0245-y
- Thermal buckling of nanorod based on non-local elasticity theory vol.47, pp.5, 2012, https://doi.org/10.1016/j.ijnonlinmec.2011.09.023
- Nonlinear Constitutive Model for Axisymmetric Bending of Annular Graphene-Like Nanoplate with Gradient Elasticity Enhancement Effects vol.139, pp.8, 2013, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000625
- Application of strain gradient elasticity theory for buckling analysis of protein microtubules vol.11, pp.5, 2011, https://doi.org/10.1016/j.cap.2011.02.006
- Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model vol.330, pp.8, 2011, https://doi.org/10.1016/j.jsv.2010.10.028
- INVESTIGATION OF SIZE EFFECTS ON STATIC RESPONSE OF SINGLE-WALLED CARBON NANOTUBES BASED ON STRAIN GRADIENT ELASTICITY vol.09, pp.02, 2012, https://doi.org/10.1142/S0219876212400324
- Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory vol.11, pp.1, 2011, https://doi.org/10.12989/scs.2011.11.1.059
- Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method vol.24, pp.3, 2017, https://doi.org/10.1080/15376494.2015.1128025
- On size-dependent vibration of rotary axially functionally graded microbeam vol.101, 2016, https://doi.org/10.1016/j.ijengsci.2015.12.008
- Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach vol.26, pp.5, 2010, https://doi.org/10.1007/s10409-010-0374-z
- Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure vol.54, pp.1, 2012, https://doi.org/10.1016/j.ijmecsci.2011.09.007
- Recent Researches on Nonlocal Elasticity Theory in the Vibration of Carbon Nanotubes Using Beam Models: A Review vol.24, pp.3, 2017, https://doi.org/10.1007/s11831-016-9179-y
- Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams vol.17, pp.5, 2016, https://doi.org/10.12989/sss.2016.17.5.837
- Nano-resonator dynamic behavior based on nonlocal elasticity theory vol.229, pp.14, 2015, https://doi.org/10.1177/0954406214562058
- Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method vol.43, 2017, https://doi.org/10.1016/j.apm.2016.10.061
- Design and simulation of resonance based DC current sensor vol.3, pp.3, 2009, https://doi.org/10.12989/imm.2010.3.3.257
- Effective mechanical properties of micro/nano-scale porous materials considering surface effects vol.4, pp.2, 2011, https://doi.org/10.12989/imm.2011.4.2.107
- Numerical investigation of mechanical properties of nanowires: a review vol.5, pp.2, 2009, https://doi.org/10.12989/imm.2012.5.2.115
- Nonlocal Finite Element Analysis of CNTs with Timoshenko Beam Theory and Thermal Environment vol.93, pp.4, 2009, https://doi.org/10.1007/s40032-012-0041-1
- Dynamic stiffness matrix method for axially moving micro-beam vol.5, pp.4, 2009, https://doi.org/10.12989/imm.2012.5.4.385
- Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.237