• Title/Summary/Keyword: pareto-optimal

Search Result 244, Processing Time 0.03 seconds

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.647-659
    • /
    • 2024
  • Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.

Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization (다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.104-107
    • /
    • 2007
  • 다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모텔에 기반한 공진화 알고리즘(GCEA:Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.

  • PDF

A Permanent Magnet Pole Shape Optimization for a 6MW BLDC Motor by using Response Surface Method (I) (RSM을 이용한 6MW BLDC용 영구자석의 형상 최적화 연구 (I))

  • Woo, Sung-Hyun;Chung, Hyun-Koo;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.65-67
    • /
    • 2008
  • An adaptive response surface method with Latin Hypercube sampling strategy is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed algorithm consists of the multi-objective Pareto optimization and ($1+{\lambda}$) evolution strategy to find the global optimal points with relatively fewer sampling data. In the adaptive RSM, an adaptive sampling point insertion method is developed utilizing the design sensitivities computed by using finite element method to set a reasonable response surface with a relatively small number of sampling points. The developed algorithm is applied to the shape optimization of PM poles for 6MW BLDC motor.

  • PDF

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.

A Game Theoretic Cross-Layer Design for Resource Allocation in Heterogeneous OFDMA Networks

  • Zarakovitis, Charilaos C.;Nikolaros, Ilias G.;Ni, Qiang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.50-64
    • /
    • 2012
  • Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters that need to be considered in the design of next generation scheduling algorithms. This work presents a novel game theoretic cross-layer design that offers optimal allocation of wireless resources to heterogeneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in cooperative game theory that provides Pareto optimality and symmetrically fair resource distribution. The proposed strategies are determined via convex optimization based on a new solution methodology and by the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to relevant schemes in the literature show that the proposed design can be successfully employed to typify ideal resource allocation for next-generation broadband wireless systems by providing enhanced performance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well as a comparable total throughput.

  • PDF

Derivation of Optimal Distribution for the Frequency Analysis of Extreme Flood using LH-Moments (LH-모멘트에 의한 극치홍수량의 빈도분석을 위한 적정분포형 유도)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.229-232
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study.

  • PDF

An efficient multi-objective cuckoo search algorithm for design optimization

  • Kaveh, A.;Bakhshpoori, T.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.87-103
    • /
    • 2016
  • This paper adopts and investigates the non-dominated sorting approach for extending the single-objective Cuckoo Search (CS) into a multi-objective framework. The proposed approach uses an archive composed of primary and secondary population to select and keep the non-dominated solutions at each generation instead of pairwise analogy used in the original Multi-objective Cuckoo Search (MOCS). Our simulations show that such a low computational complexity approach can enrich CS to incorporate multi-objective needs instead of considering multiple eggs for cuckoos used in the original MOCS. The proposed MOCS is tested on a set of multi-objective optimization problems and two well-studied engineering design optimization problems. Compared to MOCS and some other available multi-objective algorithms such as NSGA-II, our approach is found to be competitive while benefiting simplicity. Moreover, the proposed approach is simpler and is capable of finding a wide spread of solutions with good coverage and convergence to true Pareto optimal fronts.

Analysis of the Supervision of Ecological Subsidies: Based on the Principal-agent Model

  • Zhang, Yuesheng
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.369-373
    • /
    • 2014
  • In view of the problem of the invalidity of the incentive mechanism of the ecological subsidies, which is due to the information asymmetry between the government's supervision and the enterprise endeavor to fulfill their ecological responsibilities, this paper attempts to analyze the supervision of ecological subsidies based on the Principal-agent Model. Two conclusions are drawn: firstly, the government's supervision regarding the effect of the enterprises' fulfilling the ecological responsibilities can significantly reduce the information asymmetry; secondly, the government's incentive strength and the enterprises' endeavor level of fulfilling the ecological responsibilities are both improving the surveillance dynamics. Here is the suggestion: with the increasing of the surveillance dynamics of the government and the transparency of the enterprises' fulfilling the ecological responsibilities, the government should meanwhile increase the subsidies incentive strength, therefore, to promote the effort level of the enterprises' fulfilling the ecological responsibilities to approach to the Pareto optimal value.

Multi-objective optimization using a two-leveled symbiotic evolutionary algorithm (2 계층 공생 진화알고리듬을 이용한 다목적 최적화)

  • Sin, Gyeong-Seok;Kim, Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • This paper deals with multi-objective optimization problem of finding a set of well-distributed solutions close to the true Pareto optimal solutions. In this paper, we present a two-leveled symbiotic evolutionary algorithm to efficiently solve the problem. Most of the existing multi-objective evolutionary algorithms (MOEAs) operate one population that consists of individuals representing the complete solution to the problem. The proposed algorithm maintains several populations, each of which represents a partial solution to the entire problem, and has a structure with two levels. The parallel search and the structure are intended to improve the capability of searching diverse and good solutions. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The experimental results confirm the effectiveness of the proposed algorithm.

  • PDF

Fuzzy programming for improving redundancy-reliability allocation problems in series-parallel systems

  • Liu, C.M.;Li, J.L.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-94
    • /
    • 2011
  • Redundancy-reliability allocation problems in multi-stage series-parallel systems are addressed in this study. Fuzzy programming techniques are proposed for finding satisfactory solutions. First, a multi-objective programming model is formulated for simultaneously maximizing system reliability and minimizing system total cost. Due to the nature of uncertainty in the problem, the fuzzy set theory and technique are used to convert the deterministic multi-objective programming model into a fuzzy nonlinear programming problem. A heuristic method is developed to get satisfactory solutions for the fuzzy nonlinear programming problem. A Pareto optimal solution is found with maximal degree of satisfaction from the interception area of fuzzy sets. A case study that is related to the electronic control unit installed on aircraft engine over-speed protection system is used to implement the developed approach. Results suggest that the developed fuzzy multi-objective programming model can effectively resolve the fuzzy and uncertain problem when design goals and constraints are not clearly confirmed at the initial conceptual design phase.

  • PDF