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Abstract – Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters 

that need to be considered in the design of next generation scheduling algorithms. This work presents a 

novel game theoretic cross-layer design that offers optimal allocation of wireless resources to hetero-

geneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method 

is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in coopera-

tive game theory that provides Pareto optimality and symmetrically fair resource distribution. The pro-

posed strategies are determined via convex optimization based on a new solution methodology and by 

the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to re-

levant schemes in the literature show that the proposed design can be successfully employed to typify 

ideal resource allocation for next-generation broadband wireless systems by providing enhanced per-

formance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well 

as a comparable total throughput.   
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1. Introduction 
 
Next generation wireless networks need to provide quick 

ubiquitous network access to their rapidly expanding fac-

tion of mobile users. The core process used to achieve such 

performances is based in the network mechanisms, which 

must efficiently allocate the available resources. These 

mechanisms deliberate and combine low-level system dy-

namics from the medium access control (MAC) and physi-

cal (PHY) layers and are widely known as cross-layer 

schemes. 

Extensive research has been attempted in regards to 

cross-layer designs [1-6], e.g.the adoption of the OFDMA 

technique approach. Due to itsorthogonality principle, 

OFDMA is considered to bethe most effective multiple 

access method for 3G, 4G, and further generations of 

broadband wireless networks, such as 3GLTE [1] and Wi-

MAX [2]. A notable observation is that most of the existing 

cross-layer schemes focus on maximizing the overall sys-

tem’s data rate or minimizing the overall system’s power 

consumption [3-6]. However, by optimizing a system’s 

aggregate resource efficiency without considering indi-

viduals might benefit users who have good channel condi-

tions, but starve other users with bad channel conditions. 

As shown in [7] and [8],this problem can lead to unfair and 

greedy resource distribution. 

In order to resolve this issue, some researchers have 

used cooperative game theory to propose schemes that 

provide fair resource allocation relying on tradeoffs be-

tween a system’s efficiency and proportional fairness pat-

terns [9-17]. Such cooperative game theoretical schedulers 

are discussedin [10] and [11]. It has beenobserved that, on 

the one hand,the proposed schemes provide fairness 

amongst users, even to thosewho are in a deep fade, but on 

the other hand they dramatically increase the system’s 

power consumption. Therefore, fairness considerations 

induce a power increase or throughput decrease. To over-

come this problem two notable attempts are presented in 

[12] and [13]. In particular, [12] investigates a cooperative 

game, where players cooperate to achieve a mutually desir-

able equity solution. In [13], the resource allocation 

scheme wasdeveloped usingthe S-NBS concept; it operates 

by forming coalitions among users. Both [12] and [13] 

show that in addition tofair resource allocation these meth-

odscan also achieve the maximization of the aggregate 

throughput at thesame levels as opportunistic schemes, i.e., 

the greedy Maximal-Rate (M-R) algorithm presented in 

[14]. Consequently, smart scheduling can reduce or even 

obliterate the costtothroughput or power consumption 

stemming from fairness considerations. 

Another key issue in proportionally fair schemes is that 

users frequently suffer from fairness deficiencies due to the 

users’ unequal spatial positioning and unequal delays, as 

pointed in [15]. In other words, resource allocation might 

be fair between users running thesame applications, but 

beunfair tousers having different requirements. Therefore, 

to avoid such deficiencies, it is evidentthat new designs 

must consider the heterogeneous users’ requirements in-
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stead of the homogeneous. However, this heterogeneous 

assumption induces several additionalsystem constraints, 

which commonly cause the cross-layer problem to evolve 

into a NP-hard problem. For this reason the authors of [16] 

and [17] utilized utility theory from the economic domain; 

they designed utility functions to combine the users’ re-

quirements with their fairness considerations and through-

put oriented processes. Such utility functions offer a tangi-

ble metric to quantify the level of satisfaction foreach user 

when a certain amount of resources have been assigned to 

that user. More precisely, in [16] the problem of subcarriers 

and power allocationis considered, as a maximization prob-

lem regardingeach user’s utility function and show that the 

obtained solution has the property of proportional fairness 

if the utility function is logarithmic according tothe 

achieved throughput. Similar findings are presented in 17], 

which additionally reports that proportional fairness can be 

considered as a special case of the S-NBS concept, when 

the rate is the utility function and the minimum required 

rate is zero. Consequently, it is prudent to allocate the re-

sources on fairness concepts defined directly in terms of 

users’ utilities rather than the users’ throughputs, as seen in 

[10-15]. 

In this work we address the aforementioned issues and-

propose a novel S-NBS-based cross-layer design for 

OFDMA networks. The key innovationsof our work are 

summarized as follows: 

• Thisis the first work toapproach cooperative (S-NBS) 

resource scheduling from the cross-layer perspective 

considering QoS heterogeneity. Other relevant studies 

have often considered single-layer architectures with 

homogeneous QoS considerations [10-17]. Thisim-

proves the performance in terms of transmission delay 

by reducing the probability of data packet loss at the 

MT. 

• This is the first work to derive explicit mathematical 

solutions usingthe S-NBSconcept. To the best of our 

knowledge, other relevant approaches propose either 

single-layer or cross-layer allocation patterns based on 

complex numerical solutions, [12, 13, 15-18]. We 

overcome this major problem by utilizing a new low-

complexity solution methodology, presented in Appen-

dix B. 

• We introduce a novel utility optimization objective to 

express the users’ satisfaction in terms of throughput. 

The utility objective fully complies with the S-NBS 

axioms, meaning that it incorporates the S-NBS prop-

erties instead of considering them as individual opti-

mization constraints, as discussed in [12, 16, 17], and 

[18]. Such incorporation increases the accuracy of the 

final strategies and decreases their complexity by 

avoiding further variable relaxations during the solu-

tion process. 

 

The rest of the paper is organized as follows: In Section 

2, we discuss the OFDMA system regarding the PHY and 

MAC layers and the queuing model’s characteristics. In 

Section 3, we employthe NBS bargaining framework from 

game theory to define the utility function that is used as the 

optimization objective forthe primary optimization prob-

lem. Section 4presents the formulation of the primary op-

timization problem subject to the cross-layer constraints. 

We show that through applying a time-sharing relaxation of 

the subcarrier indexes the constrained cross-layer problem 

can be transformed to a convex optimization problem over 

a convex and feasible set. The optimal allocation policies 

are presented in Section 5, whereasin Section 6we provide 

details regardingthe implementation process of our solution 

by means of convergence feasibility and complexity per-

formances. Section 7 discussesthe simulation results and 

comparisons, andour conclusions are drawn in Section 8. 

 

 

 

2. The OFDMA System Model 

 

Fig. 1 shows the downlink (DL) OFDMA system model 

with bandwidth BW  equally divided to the F
N  system 

subcarriers. Before the scheduling operation is performed, 

the scheduler collects the Channel State information (CSI) 

and Queue State Information (QSI) fromall of the K het-

erogeneoususers. More precisely, in the beginning of each 

timeslot the scheduler obtains the CSI through the uplink 

dedicated pilot subcarriers transmitted by the mobile users. 

The information forthe users’ queue dynamics from the 

higher layers is updated according to an incremental update 

algorithm, which senses and accordingly modifies the QSI 

of each user [6]. Based on the CSI and QSI, the Base Sta-

tion (BS)scheduler can then decide how to distribute the 

resources according to its allocation policies.The allocation 

decision isfinally announced to each individual mobile user 

through separate control channels under the assumption 

that the CSI is perfectly available. 
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Fig. 1. The cross-Layer modelinan OFDMA system with 

NBS considerations, heterogeneous QoS, and per-

fect CSI 
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2.1 The Channel Model 

 

Here we consider DL time-varying transmissions over a 

quasi-static multi-path slow fading channel. After remov-

ing the Cyclic Prefix (CP) and performing Fast Fourier 

Transforms (FFT) inthe BS, the received Orthogonal Fre-

quency Division Multiplexing (OFDM) symbol of the -thj  

user, 1,...,j K=  on the -thi subcarrier, 1,...,
F

i N=  is 

given by: 
 

ij ij ij ij
y h x z= + , (1) 
 

where 
ij
x  represents the transmitted OFDM symbol, 

ij
h  

is the identically independent distributed (i.i.d) actual chan-

nel gain, is the complex circularly symmetric Gaussian 

(CCSG) noise with zero mean, and 2

0
( ) /

z F
BW N Nσ = ⋅  

variance, i.e. 
2

~ (0, ) ,
ij z
z σCN  where 

0
N  denotes the 

noise power spectral density. Relying on the definition of 

ij
x , we denote the transmitting power allocated from the 

BS to user j  through subcarrier i  by 
2

ij ijp E x =   
1
, 

which can be expressed in matrix form by the power allo-

cation policy 
FN K ijP p×  =   , with [ ]E ⋅  to indicate the 

expectation operator. 

In our system it is not allowed for more than one user to 

occupy the same subcarrier during a timeslot, e.g., for each 

i  if 0
ij
p ≠  then 0

ij
p ′ = , j j′∀ ≠ . This admission is 

expressed by the following subcarrier allocation rule: 

 

1

1 ,  
K

ij

j

s i
=

= ∀∑ , (2) 

 

where ij
s  denotes the subcarrier allocation index and is 

defined as { }0,1
ij
s ∈  indicating that allocation occurs 

( 1
ij
s = ) when subcarrier i  is allocated to user j , other-

wise allocation does not occur ( 0
ij
s = ). In addition, we 

represent the subcarrier allocation policy in matrix form as 

FN K ijS s×  =   , with individual matrix elements { }0,1
ij
s ∈ . 

Finally, to guarantee the feasibility of the transmissions 

in our system, the average total transmitting power from 

the BS over all users and subcarriers 
1 1

FNK

ij ij

j i

E s p
= =

 
⋅ 

 
∑∑ 1 

mustnot exceed the total available power inthe BS, ex-

pressed as TOTAL
P . This is expressed by the following 

power allocation rule: 

 

1 1

FNK

ij ij TOTAL

j i

E s p P
= =

 
⋅ ≤ 

 
∑∑ 1

. (3) 

2.2 The Physical Layer Model for Multi-User 

OFDMA Systems 

 

Recalling our assumption that a perfect CSI is available 

tothe BS, we can straightforwardly consider that the chan-

nel is Gaussian. Therefore, during a fading slot the maxi-

mization of the mutual information ( )M ⋅  between the 

received ij
y  and transmitted ij

x  symbol yields the maxi-

mum achievable instantaneous capacity ij
c  for user j  on 

subcarrier i . In other words, according to Shannon’s ca-

pacity theorem we can define the maximum achievable 

instantaneous capacity ij
c  as: 

 

( )
( ) ( )22

max : log 1
ij

ij ij ij ij ij ij
p x

c M x y h p h= = + ⋅ . (4) 

 

To achieve maximum performance, each user’s j  in-

stantaneous data rate ij
r  on subcarrier i needs tomatch the 

maximum instantaneous capacity ij
c in, given the channel 

realizations { }2ijh . In other words, weapply M-ary Quad-

rature Amplitude Modulation (M-QAM) to offer a finite set 

{0,1, , }D= …D  of the possible transmission data rates to 

each user j , with D used to express the maximum amount 

of information that can be transmitted by each subcarrier 

(in bits/OFDM symbol). 

By applying M-QAM, theBit-Error Rate (BER) of user 
j  on subcarrier i  can be expressed as a function of the 

instantaneous rate ij
r  and theSignal-to-Noise Ratio (SNR) 

[19]: 

 

1.5

2 1
0.2 exp

ij

ij

rijBER
− ⋅Γ 

⋅   − 
≈ , 

3
10ijBER −≤ . (5) 

 

The variable ij
Γ  in (5) represents the SNR and it is giv-

en by ( )2 2
/ij ij ij zp h σΓ = ⋅  [19]. Consequently, from (5) 

the maximum achievable instantaneous data rate ij
r  of 

user j  on subcarrier i can bewritten as: 

 
2

2 2
log 1

ij ij ij

ij

z

p h
r

η

σ

 ⋅ ⋅ = +
  
 

, (6) 

 

where ij
η  is a variable used for notational brevity, denoted 

as ( )1.5 / ln 5ij ijBERη = − ⋅ . Therefore, we express the data 

rate allocation policy in matrix form as 
FN K ijr×  =  R , 

with the individual matrix elements the terms from ij
r  

determined by (6). 

In Section 3 we will use the utility theory to express 

1 The expectation operator [ ]E ⋅  refers to the average power over the 

random realizations { }2ijx  of the transmitted OFDM symbols { }ijx . 
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each user’s level of satisfactionin terms of ij
r  relyingon 

the S-NBS properties. In the following subsectionwe will 

correlate ij
r  from the physical layer with each user’s traf-

fic parameters from the higher layers to derive the system 

conditions by means of cross-layer constraints. 

 

2.3 The Queuing Model 

 

To express the traffic parameters of each user from the 

higher layers, we assume that each user’s queue is de-

scribed by the / /1M G  model with a non-selected time-

slot [3]. In our queuing system, thedata packets are fixed at 

B bits and arrive to the users’ queues by following an in-

dependent Poisson arrival process atrate j
λ (in packets per 

timeslot). Let us denote the maximum delay tolerance of 

each user j  as 
max

j
T (in timeslots) in order to represent 

each user’s QoS characteristics with a3-tuple structure 
max

, ,j jB Tλ   . We can now correlate the data rate ij
r  from 

the physical layer withthe traffic rate from the higher layers 

with the following Lemma. 

 

Lemma 1: To guarantee the QoS requirements of each 

heterogeneoususer j , the cross-layer QoS condition 

 

( )max

1

, ,
FN

ij ij j j j

i

E s r q B T λ
=

 
⋅ ≥ 

 
∑  (bits/sec/Hz)2, (7) 

 

must be satisfied with the equivalent rate at the user’s queue to 

be given by ( )max
, ,j j jq B T λ =

( )( )max max max

max

2

2

F j j j j j j

j s

B N T T T

T t BW

λ λ λ⋅ ⋅ ⋅ ⋅ ⋅ + − ⋅

⋅ ⋅ ⋅
 

and s
t  to denote the duration of the scheduling timeslot. 

 

Proof: The proof of Lemma 1 is the same asthe proof 

forLemma 1 in our previous work [3] and has been omitted 

due to space limitations. � 

 

Lemma 1 implies that the average scheduled data rate 

1

FN

ij ij

i

E s r
=

 
⋅ 

 
∑  should be at least the same as the minimum 

required traffic arrival rate ( )max
, ,j j jq B T λ  to the queue of 

each user j . In other words, from Lemma 1 we derive the 

cross-layer condition that associates the data rates from the 

physical and higher layers expressed in bits/sec/Hz. In the 

case where users have no delay requirements, i.e., 
max

j
T →∞ , then by applying the De L’Hospital’s rule con-

dition (7) becomes: 

 

1

FN
j F

ij ij

i s

B N
E s r

t BW

λ

=

⋅ ⋅ 
⋅ ≥  ⋅ 

∑  (bits/sec/Hz), (7a) 

 

meaning that for such users the average data rate should be 

at least equal to their corresponding queue arrival rate j
Bλ . 

Finally, the packets at the / /1M G  queues and the arriv-

ing packets at the PHY layer are multiplexed over time 

according to the multiplexing process described in [20]. 

For simplicity, we have omitted the details of the cross-

layer multiplexing process, howeverwe still consider it 

inour simulations. 

 

2.4 The Cross-Layer Model 

 

In this subsection, we discuss how our scheme at the 

cross-layer realizes its queue and channel dynamics, given 

the aforementioned channel, physical and queuing models. 

At the cross-layer, our system’s dynamics are characterized 

by the system state ( )1,
FK N K× ×H Q , with 

2

FK N ijh×
 =   

H  

composing the CSI realization matrix and 1K jq×  =  Q  

beingthe 1K ×  vectorwith its -thj  element used to define 

the number of packets remaining in -thj user’s buffer. There-

fore, the cross-layer policies differ from the physical layer 

policies found in Subsections 2.1. and 2.2., sinceat the cross-

layer the scheduler is dependentonboth the channel and queu-

ing characteristics. In other words, the cross-layer scheduler 

determines the subcarrier, power, andrate allocation from the 

policies 1
, ,

F FK N K N K× × ×
  H QS  1

,
F FK N K N K× × ×
  H QP , and 

1
,

F FK N K N K× × ×
  H QR , respectively. 

 

 

 

 

 

3. The Formulation of the Objective Function with 

S-NBS Considerations 

 

In this section,we express each user j ’s satisfaction rate 

by means of throughput relying on cooperative game the-

ory and especially on the S-NBS bargaining concept. 

It wasshown in [13] that the S-NBSconcept can provide 

fair and efficient bandwidth allocation subject to the users’ 

(players’) rate requirements. In such bargaining each us-

er j has a utility function j
f and an initial utility 

0

j
u . The 

initial utility 
0

j
u  denotes the minimum rate that the sched-

uler must provide to the user in order foruser to participate 

in the S-NBS game3. Moreover, each j
f  is defined as a 

subset of KR  termed as Ψ  that describes the set of 

2 The expectation operator E ⋅    refers to the average throughput over 

random realizations { }2ijh  of the channel gains { }ijh  and the queue-

state-information (QSI) ( )max, ,j j jq B T λ . 
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game strategies for the K  users. Assuming that 
0

j
u  can 

be achieved for each user that participates in the game, 

then a 0
Ψ ∈Ψ  exists so that ( ){ }00

f uψ ψΨ = ∈Ψ ≥ , 

where ( ) ( )1
,...,

K
f f fψ =  is the utility vector and 

( )0 0 0

1 ,..., Ku u u=  is the initial utility vector. Let the set of 

achievable utilities be denoted by ( ){ }U f ψ ψ= ∈Ψ  and 

the class of sets of utility measures that satisfy the minimum 

utility bounds 0u be denoted by 
0, KG U u U R = ⊂  . Then 

the S-NBS
K

NBS
S G R→  satisfies the following Axioms 

[21]: 

 

(1) ( )0,NBSS U u  is Pareto optimal. 

(2) Guarantees the minimum required utility 

( )0 0,NBSS U u U∈ , where { }0 0U u U u u= ∈ ≥ . 

(3) Is independent of irrelevant alternatives: If the feasi-

ble set shrinks but the solution outcome remains feasible, 

then the solution outcome for the smaller feasible set willbe 

the same point. This can be written as V U⊂ , ( )0,V u G∈  

and ( )0,NBSS U u G∈  then ( ) ( )0 0, , .NBS NBSS U u S V u=  

This axiom offers fairness. 

(4) Provides symmetry, which means that all of the users 

have the same priorities. NBSS  satisfies symmetry if U  

is symmetric with respect to subset { }1,..., ,...,
Class

J j K⊆  

u U∈ , ,j j J′∈ . Thus if 
0 0

j j
u u ′=  then ( )0,NBS

j
S U u =  

( )0,NBS
j

S U u
′
. 

 

Considering thesefour Axioms we present the S-NBS 

propertyutilizingthe following Theorem: 

 

 

Theorem 1: If the utility function j
f  is concave upper-

bounded defined on Ψ , which is convex and a subset of 
KR , and J  is the set of indices of users who are able to 

achieve a performance strictly superior to their initial per-

formance, then there exists a symmetric Nash bargaining 

point ψ  that verifies ( ) 0 ,  
j j
f u j Jψ ≥ ∈  and comprises 

the unique solution of the maximization problem: 

 

( )( )0 0max ,   j j

j J

f uψ ψ
∈

− ∈Ψ∏ . (8) 

 

Proof: The proof of Theorem 1 is similar to the proof 

presented in [21] and has been omitted due to space limita-

tions.  � 

 

From Theorem 1, each user j ’s level of satisfaction is 

represented by the S-NBS-based utility function 

( ) 0

j j
f uψ − , where the overall system’s level of satisfac-

tion as ( )( )0j j

j J

f uψ
∈

−∏ . Accordingly, each user j ’s level 

of satisfaction in terms of data ratecan be expressed by the 

utility function 
0

1

FN

ij ij j

i

s r u
=

 
⋅ − 

 
∑ ; the overall system’s level 

of satisfaction is
0

1

FN

ij ij j

ij J

s r u
=∈

  
⋅ −     

∑∏ . Consequently, we 

can reformulate optimization problem (8) as: 

 

1 1

1 1

0

, , , 1

0

, , , 1 1

max

max ln

F

K N K N K K N K N KF F F F

F

K N K N K K N K N KF F F F

N

ij ij j
H Q H Q ij J

NK

ij ij j
H Q H Q j i

E s r u

E s r u

× × × × × ×

× × × × × ×

    =∈   

    = =   

   
⋅ − ⇒        

   
⋅ −        

∑∏

∑ ∑

S P

S P

.   

 (9) 

 

Utility optimization problem (9) aims to maximize the 

overall users’ level of satisfaction over the subcarrier and 

power allocation policies 1
,

F FK N K N K× × ×
  H QS  and 

1
,

F FK N K N K× × ×
  H QP , respectively. The overall users’ level 

of satisfaction is represented by the aggregate utility of the 

allocated subcarriers to each user j . In addition, it is easy 

to seethat maximization problem (9) fully complies with all 

of the four S-NBS Axioms in terms of subcarrier and pow-

er allocations. 

In the following section, we rely on (9) to formulate a 

cross-layer optimization problem subject to the system 

conditions determined by (2), (3) and (7); we derive the 

optimal solutions forthe new problems utilizing convex 

optimization. 

 

 

3 It is important to examine the difference between each user’s initial 

utility 0

ju  and its minimum required traffic arrival rate ( )max, ,j j jq B T λ . 

The initial utility 0

ju  is the data rate required by a user to participate in 

the S-NBS game. The minimum required traffic arrival rate 

( )max, ,j j jq B T λ  is the data rate required by a user to satisfy its mini-

mum QoS requirements. In the case where resource starvation occurs, 

the scheduler may not be able to satisfy all users’ QoS requirements 

( ( )max, ,j j jq B T λ ) but may be able to provide a rate equal to each user’s 

0

ju . This means that users may not be totally satisfied but they partici-

pate in the S-NBS game to increase system’s performance. In [31] we 

proved that the correlation between these two parameters is given by 

( )max 0, , 1j j j jq B T uλ − ≥ . This correlation has major practical significance 

as it ensures that the S-NBS game is feasible even if the allocated data 

rate is less than the incoming traffic arrival rate to each user’s queue. 
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4. Problem Formulation and Convex  

Optimization-based Scheduling Strategies 

 

In this section we will formulatethe primary cross-layer 

utility optimization problem and transform it to a convex 

strategy through applying time-sharing relaxation of the 

optimization variables. In addition, we derive the optimal 

solutions by means of final formulas via thenovel solution 

methodology introduced in Appendix B. 

 

4.1 The Cross-Layer Optimization Problem 
 
As we have mentioned, our aim is to maximize the over-

all users’ level of satisfaction subject to the OFDMA sys-

tem’s characteristics.In other words, we rely on (9) to for-

mulate a cross-layer optimization problem in order to de-

termine the optimalresource allocation policiesand simul-

taneously maintain the OFDMA physical layer constraints 

regarding the subcarrier selection, transmission power, and 

QoS requirements as determined by (2), (3) and (7), re-

spectively. This cross-layer optimization problem is formu-

lated as: 

Find the optimal subcarrier, power and data rate alloca-

tion policies, i.e., 
* *

1
,

F FK N K N K ij
s× × ×

   =   H QS ,  

* *

1
,

F FK N K N K ij
p× × ×

   =   H QP and 
*

1
,

F FK N K N K× × ×
  H QR  

*

ijr =   , respectively 

such that:  
1 1

0

, , , 1 1

max ln
F

K N K N K K N K N KF F F F

NK

ij ij j
H Q H Q j i

s r u
× × × × × ×    = =   

  
⋅ −     

∑ ∑
S P

, 

 (10) 

subject to: { }0,1
ij
s ∈ , (11) 

 
1

1
K

ij

j

s
=

≤∑ , (12) 

 
1

1
K

ij

j

s
=

≤∑ , (13) 

 ( )0 max

1

ln , ,
FN

ij ij j j j j

i

E s r u q B T λ
=

   
⋅ − ≥        

∑ , 

  (14) 

 
1 1

FNK

ij ij TOTAL

j i

E s p P
= =

 
⋅ ≤ 

 
∑∑ . (15) 

 
In the cross-layer problem of (10)-(15), constraints (11) 

and (12) ensure that each subcarrier can be occupied by 

only one user per timeslot. Constraint (13) certifies that the 

power can possessonly positive values, (14) expresses the 

average delay boundof each user, and (15) the average total 

power limitation of the system.It is a giventhat the cross-

layer problem is a mixed combinatorial problem,sincethe 

variables { }ijs  are discrete and { }ijp  are continuous. In 

such problems, the optimal { }ijp  and their corresponding 

ij
r s can be calculated for a selected user over a subcarrier 

for each possible combination of { }ijs . The total system 

throughput can be then evaluated for all cases by enumerat-

ing all of the possible combinations of { }ijs ; the one that 

gives the largest throughput is the optimal solution.This 

means that there would be FNK  possible subcarrier as-

signments,sinceeach subcarrier can be used by only one 

user.The above solution methodologyleads to impracticable 

optimal solutions, especially for real-time systems, i.e. for 

2048
F

N = , 200K = , due to the high complexity of the 

allocation strategies. 

Since we wish to avoid the above complexity we trans-

form the cross-layer problem laid out in (10)-(15) into a 

convex one based on thetechnique presented in [22] and 

[23]. More specifically, we introduce the factor ( ]0,1
ij
s ∈ɶ  

to transform the subcarrier allocation constraint (11) in 

terms of time-sharing. The new variable ij
sɶ  indicates the 

portion of time that subcarrier i  is assigned to user j dur-

ing a transmission frame. The non-integer fractional part of 

( ]0,1
ij
s ∈ɶ  is given by the fractional function of ij

sɶ , i.e., 

( )ij ij ijfrac s s s = −  ɶ  for ( )0 1ijfrac s< ≤ɶ . Nevertheless, 

although the introduction of thetime-sharing factor 

( ]0,1
ij
s ∈ɶ , the utility optimization objective (10) is not 

convex over ( ),ij ijs pɶ .To bypass this problem we intro-

duce the continues variable ij ij ij
p p s= ⋅ɶ ɶ  and the maxi-

mum achievable instantaneous data rate ij
r  in (6) is now 

denoted as 

2

2 2
log 1

ij ij ij

ij

ij z

p h
r

s

η

σ

 ⋅ ⋅ = +
 ⋅ 
 

ɶ
ɶ

ɶ
. The cross-layer 

problem in (10)-(15) can be then transformed into a convex 

problem as: 

 

Find
* *

1
, ,

F FK N K N K ij
s× × ×

   =    ɶH QS
*

1
,

F FK N K N K× × ×
  H QP  

*

ijp =  ɶ  and 
* *

1
,

F FK N K N K ij
r× × ×

   =    ɶH QR ,  

such that: 
( ] { }1 1

1

0

1 1
, : 0,1 , 1 , , : 0

max ln
F

K

K N K N K ij ij K N K N K ijF F F F
j

NK

ij j

j i
H Q s s H Q p

E s r u

× × × × × ×
=

   = =   ∈ ≤ ≥    
  

   
⋅ −        ∑

∑ ∑
ɶ ɶ ɶ

ɶ ɶ

S P� �
, 

 (16) 

subject to: ( )0 max

1

ln , ,
FN

ij ij j j j j

i

E s r u q B T λ
=

   
⋅ − ≥        

∑ɶ ɶ , 

  (17) 

 
1 1

FNK

ij TOTAL

j i

E p P
= =

 
≤ 

 
∑∑ ɶ . (18) 

 

Proposition1: The cross-layer problem in (16)-(18) is 

convex over a feasible convex set within the region speci-

fied by ( ),ij ijs pɶ ɶ . 
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Proof: The proof of Proposition 1 is presented in 0. � 

 

By using Proposition 1, we can now derive the optimal 

allocation policies of the cross-layer problem (16)-(18) 

through the utilization ofconvex optimization. 

 

4.2 Convex Optimization-based Solutions 

 

After definitionof the Lagrangian function and the Karush-

Kuhn-Tucker (KKT) conditions of the cross-layer optimiza-

tion problemlaid out in(16)-(18), the optimal subcarrier, power 

and data rate allocation policiesare signified as: 

 

Theorem 2: The optimal S-NBS-based subcarrier alloca-

tion policy 
* *

1
,

F FK N K N K ij
s× × ×

   =    ɶH QS  has individual 

matrix elements.The optimal subcarrier allocation index 
*

ij
sɶ  is given by: 

 

( )* * *

*
0,  if  ,

1,  otherwise 

i ij j

ij

H
s

ν ξ µ >
= 


ɶ , (19) 

 

where 
*

j
ξ , 

*µ  and 
*

i
ν  represent the optimal Lagrangian 

multipliers associated with the QoS constraint (17), the power 

allocation constraint (18) and the subcarrier allocation con-

straint 
1

1,
K

ij

j

s
=

≤∑ɶ  respectively; function ( )* *
,ij jH ξ µ  is 

presented in Appendix B due to space limitations. The op-

timal user 
*j  can be then defined by decoupling 

*

1
,

F FK N K N K× × ×
  H QS  among the F

N  system’s subcarriers 

and by applying the following searching process: 
 

[ ]
( )* * *

1,

For 1 to 

  argmax ,

F

ij j
j K

i N

j H ξ µ
∈

=

=
 and 

*

*

*

1,  if   

0,  if   does not exist
ij

j j
s

j

 == 


ɶ

. 

 (20) 
 
Proof: The proof of Theorem 2 is presented in Appendix 

B.  � 
 
Theorem3: The optimal S-NBS-basedpower allocation 

policy 
* *

1
,

F FK N K N K ij
p× × ×

   =    ɶH QP  has individual matrix 

elements. The instantaneous optimal power 
*

ij
pɶ  of user j  

on subcarrier i is given by: 
 

 

( )
( )

2*

0
0 * 2

1

2
2 ln 2 *

* 2
2 exp ln 2 1 , if 1

0                                                                        , if 

j ij ij

u j
j z

h

uz

ij

ij
ij ij

W s
p h

s

ξ η

µ σσ

η

+

+ ⋅ ⋅

⋅ ⋅ ⋅

    
    
    ⋅ − =
  =   
        

ɶ
ɶ

ɶ* 0ij








 = , 

 (21) 

where ( )W ⋅  denotes the Lambert-W function [24] and the 

notation ( )x +
 means ( )max 0, x . 

 

Proof: The proof of Theorem 3 is presented in Appendix 

B. � 

 

Relying on Theorems 2 & 3, the optimal S-NBS-based op-

timal throughput allocation policy 
*

1
,

F FK N K N K× × ×
  H QR  

*

ijr =  ɶ  has individual matrix elements for the optimal data 

rate 
*

ij
rɶ  allocated to user j  on subcarrier i  given by 

2
*

*

2 2
log 1

ij ij ij

ij

z

p h
r

η

σ

 ⋅ ⋅ = +
  
 

ɶ
ɶ . 

 

 

 

5. The Implementation Process and the Evaluation 

of the Optimal Results 

 

In this section, we examine the theoretical performance 

of an efficient root-finding iteration process utilized to 

compute the optimal Lagrangian multipliers introduced in 

Theorems 2 & 3. We also study the feasibility of our solu-

tions in terms of implementation complexity,minimum 

required transmitting power, and the algorithm’s conver-

gence. 

 

Iteration ProcessDetails: In order to define the optimal 

solutions 
*

ij
sɶ  and 

*

ij
pɶ  in (19) and (21), respectively, we 

initially need to obtain the sets of the optimal Lagrangian 

multipliers { }*jξ  and { }*µ  sothat the QoS constraint (14) 

of the problem laid out in (10)-(15) is satisfied for all users. 

In other words, the role of the Lagrangian multipliers { }*jξ  

and { }*µ  in (19) and (21) is to calibrate the subcarrier 

and power allocation,ensuring that the minimum, per user, 

required throughput, e.g., ( )max
, ,j j jq B T λ 4 is provided. 

The aforementioned Lagrangian multipliers { }*jξ  and 

{ }*µ  are defined by an iterative searching algorithm with 

its main process described by: 

 

4 In reality, there are instances where some users have significantly worse 

channel conditions or higher QoS requirements (or even both) than oth-

ers. In such cases, we have observed that traditional cross-layer schemes, 

e.g. [3, 4, 5, 12, 13, 18], allocate resources to users with good channel 

conditions without satisfying those who are in poor conditions. In other 

words, the QoS constraint (14) is not satisfied for each individual user 

resulting inproblematic and unfair allocation of the available resources. 
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{ } { }( )
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, 2 exp ln 2 1 0,      

, ln log 2
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j

h
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u
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η
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+
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∑ ∑ ɶ

. 

 (22) 

 

In (22), if { } { }( ) { }* * * *
, 0,

j j j j
F ξ µ ξ ξ= ∀ ∈  then the QoS 

constraint (14) is ensured for each user, whereas if 

{ } { }( )* *
, 0

j
P ξ µ >  means that part of the supplied power 

TOTAL
P  remains unexploited. Solving (22) through the 

Semi-Implicit-Root (SIR) finding approach [25, 26], we 

straight forwardly obtain the optimal multipliers { }*jξ  and 

{ }* ,µ  and consequently the optimal solutions 
*

ij
sɶ  and 

*

ij
pɶ  from (19) and (21), respectively. At this point we can 

additionally find the minimum required power min
P  re-

quired to support all of the delay constraints of the hetero-

geneous system users by solving the following system of 

equations. 

 

( )

( )

* 2

min 2
1 1

* * 0 max

1 1

1

ln , ,

F

F F

N K
ij z

i j
ij

N N

ij ij j j j j

i i

s
P E

h

E s r u q B T

σ
κ

η

λ

+

= =

= =

  ⋅  = ⋅ −  ⋅  
    
 ⋅ − =         

∑∑

∑ ∑

ɶ

ɶ ɶ

.  

 

We notethat it is useful to find min
P  prior to the alloca-

tion process in order to determineif the total supplied pow-

er TOTAL
P  is sufficientfor our system given the current 

channel conditions, i.e., if min TOTAL
P P>  it becomesmean-

ingless to proceed. 

 

Comments on the Scheme’s Convergence and Feasi-

bility: The convergence of the introduced scheme is guar-

anteed for the following reason. For a single system user 

,j  as 
*

j
ξ  increases the function ( )* *

,ij jH ξ µ  decreases 

F
i N∀ ∈ . Hence, more of the 

*

ij
sɶ  s in (19) become one and 

the term 
* *

1

FN

ij ij

i

s p
=

⋅∑ɶ ɶ  increases. During the change of 
*

ij
sɶ  

some of the other 
*

ij
sɶ , i.e., 

*

ij
s ′ɶ s change from one to zero 

and by their turn they decrease the throughput for other 

users. However, for all system users, as all the possible 
*

j
ξ s increase, the optimal powers 

*

ij
pɶ s increase accord-

ingly. Consequently, the algorithm converges to a unique 

solution that satisfies all the constraints found in (16)-(18)5. 

In addition, since the problem in (16)-(18) is a convex op-

timization problem over a convex set, the unique optimal 

solution is also sufficient to satisfy the set of all of the nec-

essary conditions. 

In order to examine the feasibility of the introduced 

scheme, we focus on the subcarrier allocation constraints 

from (11) and (12). From Theorem 2 it is easy to conclude 

that for each subcarrier ,i  the function ( )* *
,ij jH ξ µ  is 

different for all users. From the search in (20) only the user 

with the largest ( )* *
,ij jH ξ µ  can use aspecific subcarrier, 

i.e., *

*
1

ij
s =ɶ  and 

*
0

ij
s =ɶ  for all 

* .j j≠  Also, as the er-

godic realizations { }2ijh  are i.i.d for different users, the 

optimal search in (20) is always feasible since the chance 

for the function ( )* *
,ij jH ξ µ  to be the same for different 

users happens only with probability 0. 

 

The Complexity of the Proposed Method: One shoul-

drecall that the primary purpose of utilizing the time-

sharing method is to avoid the mixed combinatorialsearch 

needed bythe problem laid out in (10)-(15). The implemen-

tation complexity of the introduced scheme dependsonly 

on the subcarrier allocation search (20) in Theorem 2. It is 

easy to seethat the theoretical complexity of (20) is linearto 

the number of users and subcarriers, i.e., ( )F
N K⋅O , with 

( )⋅O  to denote the big-O notation [26]. Contrarily, the 

mixed combinatorial solution of (10)-(15) has the exponen-

tial complexity of ( )FN
KO , significantly higher than our 

proposal. To obtain a clearer view on our scheme’s com-

plexity, we examined the implementation process of our 

optimal policies given via the dual decomposition method. 

In the latter case the theoretical complexity is significantly 

higher compared tothe convex optimization based solutions, 

since only the ellipsoid method utilized in the dual decom-

position converges in ( )( )21K +O  iterations [27]. In ad-

dition, we compared our optimal solutions with those given 

in [28], where the widely adopted Hungarian method wa-

sapplied. We found that the Hungarian method hasa com-

putational complexity of ( )4

FNO , which is also notably 

higher than the complexity of our solution.Similar conclusions 

are obtained whenexamining the further advancements of the 

Hungarian algorithm developed in [29]. For a more well 

documented view, we compared the complexity of a similar 

scheme presented in [13] with ours and found that its com-

plexity is ( )( )2 4

2logF FN K N K⋅ ⋅ +O  when multiple us-

5 A similar mechanism is presented in [22], where more information re-

gardingits convergence can be found in detail. Also, for the system of 

non-linear equations in (22), we remark that we observed rapid conver-

gence towards its roots when we applied the SIR [25], which seems to 

perform significantly better than Newton’s-Raphson, Bisection, Secant 

and Brent’s methods [26]. 
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ers participate in the system and ( )( )2
log

F F
N K N⋅ ⋅O  for 

the two-users case.In conclusion, in all our comparisons 

the proposed scheme has the lowest theoretical complexity 

amongst allof the relative examined approaches. 

 

 

6. Simulation Results 

 

In this section we examine the performance of our pro-

posed resource allocation strategies by means of the trade-

off between the required power, the data rate, and the pro-

vided fairness. To clarify our evaluations, we performed-

simulation comparisonswith three other relevant ap-

proaches; the M-R [7, 13, 14], the Fixed-Rate (F-R) [18], 

and the Max-Min (M-M) fairness schemes [9]. 

 

6.2 The Simulation Model 

 

We considered a single-cell OFDMA system with 

80BW KHz= , 64
F

N = , and 0.002
s
t sec= . The fre-

quency selective fading channel wasspecified according to 

the ISU-3 model for pedestrian and vehicular mobility in 

urban environments. We also assumed that the data packets 

hada fixed sizeof 80B bits= 6. Additionally, we set the het-

erogeneous users into four different classes,given as (K1, 

K2, K3, K4), where the K1 class 1 users have higher QoS 

requirements than the K2 class 2 users, which have higher 

QoS requirements than the K3 class 3 users. The K4users 

are the un-classed users who have high delay tolerance, e.g., 

{ }4
max

K
T →∞ . Each user class’s parameters are shown in Ta-

ble 1. 

 
Table 1. The Heterogeneous Users Characteristics 

Parameters Class 1 Class 2 Class 3 Un-Classed 

Maximum delay tolerance Tj 

(timeslots) 
2 4 8 ∞  

Poisson arrival rate λj  

(packets/timeslot) 
0.5 0.3 0.2 - 

Packet size (bits) 80 80 80 80 

Data Rate (bits/sec/Hz) 5.8564 3.0384 1.6 - 

 

6.3 The Simulation Results 

 

Fig. 2 depicts a comparison of the minimum required 

power versus the number of class 1 users possessing differ-

ent allocation schemes. As can be seen, the S-NBS scheme 

consumes 2.35dB more than the M-R, whereas at the same 

time the M-M and F-R require even more power in order to 

meet the desired QoS levels. In general, the power re-

quirements of all of the schemes increasedlinearly as the 

number of class 1 users increased. As was expected, the S-

NBS requires more power than the M-R in order to provide 

fairness amongst users, due to the fact that some users may 

be in a deep fade. In addition, the M-M and F-R schedulers 

demand more power, with the F-R being the most power 

demanding. 
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Fig. 3. The average fairness vs. the total number of system 

users (Class 1 users) 

 

Fig. 3 illustrates the fairness performance of the compared 

schemes versus the number of class 1 users. In order to quan-

tify the fairness level foreach case, we adopted the fairness 

index F from [30] as ( )
2

2
min min

1 1

/ / /
K K

j j j j

j j

F R R K R R
= =

   
= ⋅   
   
∑ ∑  

where j
R  represents the allocated rate to user j  and 

min

j
R  the user’s minimum required rate for each of the ex-

amined schemes. The F-R scheme allocates a fixed rate to 

each class 1 user, meaning that the achieved fairness index 

F is equal to one, i.e., 1F = , when homogeneous QoS 

support is required [18]7.The higher power consumption 

and the lower overall rate amongst all of the schemes is the 

price that F-R pays for perfect fairness. S-NBS scheme 

achieves a fairness of 0.993F = , which is the best of the 

remainingschemes, as the M-M and M-R have fairness 

indexes of 0.967F = and 0.911F = , respectively. There-

fore, from Fig. 3 it can be seen that the S-NBS provides 

significantly higher fairness than the opportunistic M-R 

scheme, and it also accomplishes similar power consump-

tion and overall throughput performances as theM-R. 

A comparison of the average delay of each scheme ver-

sus different numbers of class 1 users is shown in Fig. 4. 

To perform themetrics, every time that twousers wereadded 

to the system, we increased the initial value of the supplied 

power 3.5
TOTAL
P dB=  by 2

TOTAL
P dB∆ = . As more users 

wereadded to the system the overall QoS requirements 

increased. Through these settings we aimedto examine 

each scheme’s behaviour over different power starvation 

conditions in terms of average delay, namely, when the 

total supplied power TOTAL
P  is not enough to support the 

required QoSthe users will suffer from delays. It can be 

7 By definition 1F =  indicates perfect fairness provision to homogenous 

users [18]. In the case of heterogeneous users, the F-R scheme still allo-

cates a fixed rate to each user meaning that on one hand the F-R will 

achieve the maximum value of the fairness index F  but on the other 

hand F  will be less than one, i.e., 1F < , since the minimum QoS 

will be different for each user. 

6 We recall that data packets from physical and higher layers are multi-

plexed and served at the cross-layer through a realistic but exhaustive 

cross-layer system service [20]. 
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seen that even in the case where 10 class 1 users partici-

pated in the system, the M-R and S-NBS methods wereca-

pable ofproviding average delays below the minimum QoS 

threshold. The price for the overall system’s performance 

due to S-NBS fairness provision is an average of 

2.46timeslots more delay than the opportunistic M-R 

scheme. Nevertheless, the M-M and F-R schemes fail to 

provide the minimum delay requirements when 6K > as 

the required power is less than the available TOTAL
P . 
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Fig. 4. The average delays vs. the total number of system 

users (Class 1 users) 

 

Fig. 5 depicts the average throughput versus the average 

transmit power performance foreach scheme. As expected, 

we can seethat the opportunistic M-R scheme achieved a 

higher throughput than the S-NBS in all cases. For exam-

ple, the M-R reachedan average throughput of 

58.56bits/sec/Hz when the average transmitting power was 

13.58dB, whereasthe S-NBS scheme neededan additional 

of 2.87dB more power to attainthe same throughput level. 

However, the extra 2.87dB is an inconsiderable amount 

when accountingfor the fair allocation provided by the S-

NBS scheme. Moreover, the other two schemes, the M-M 

and F-R, attainedsignificantly lower performance than the 

S-NBS and M-R. For instance, when 26 .
TOTAL
P dB=  the 

of M-M and F-R throughput was 74.16bits/sec/Hz and 

71.65bits/sec/Hz whereas theM-R and S-NBS achieved 

throughputs of 105.68bits/sec/Hz and 98.77bits/sec/Hz, 

respectively. 
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Fig. 5. The average data rate vs. the average transmitting 

power 

In Fig. 6, we investigatethe average data rate per user vesus 

the overall transmit power in a system consisting of three us-

ers each with different classes, i.e., ( )1 2 3 4
, , , ,K K K K  

( )1,1,1,0= . As can be seen in sub-figures 6.a, 6.b, 6.c and 

6.e, the S-NBS scheme performed the best amongst the 

others, offering the highest tradeoff between fairness and 

efficiency. In particular, each heterogeneous user wasallo-

cated with at least hisminimum QoS requirment. When the 

supplied power TOTAL
P was greater thanits minimum value, 

i.e., 5.956
TOTAL
P dB>  (more resources available for distri-

bution), the S-NBS allocated the same data rates to all of 

the users. In other words, the proposed scheme has the 

ability to share the extra resources equaly among the het-

erogeneous users offering close to ideal fairness. On the 

other hand, in sub-figure 6.b the M-R scheme alloates the 

extra resources opportunistically, totally ignoring the fair-

ness parameter.In sub-figure 6.c, the M-M requires more 

resourcesthan the S-NBS to satisfy each user’sminimum 

QoS requirements, whereasusers remained unsatisfied at 

thelarge power region. In sub-figure 6.d, although the F-R 

scheme offers close to perfect fairness,it had asignificantly-

lower data rates than all of the others.To further clarify our 

sheme’s performance, we summarized in sub-figure 6.e the 

overall allocated data rate versus the overall supplied 

power under heterogeneous QoS considerations. The pro-

posed S-NBS achieves the highest rate performance 

amongstall of the fairness considerate schemes,including 

the M-M and F-R. 
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mit power 

 

In summery,from the above simulation results we can 

conclude that the S-NBS-schemeoffersa profitable solution 

that significantly improvesthe trade-off between the fair-

ness provision and throughput/power performance com-

pared to the relevant approaches, such as the M-R, M-M 

and F-R schemes. 
 
 

7. Conclusion 

 

In this paper,we presenta game theoretic cross-layer de-

sign for OFDMA networks that allocates subcarriers and 

poweraccording tothe S-NBS property.Initially, we corre-
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lated the system’s regulations forboth the physical layer 

and network layers in order to express them fromthe cross-

layer perspective. In addition, we utilized utility theory to 

express each user’s level of satisfaction by means of 

throughput. Using these factors, we formulated a cross-

layer problem that aimed to maximize the overall level of 

satisfaction subject to the subcarrier, power and QoS con-

straints. Furthermore, we proved that the cross-layer prob-

lem can be transformed in a convex manner over a convex 

feasible set. Through the utilizationof a novel solution me-

thodology, we then applied convex optimization to obtain 

the optimal allocation strategies by means of final formulas. 

We show that our solutions can be implemented by a low 

complexity iteration process that converges rapidly to the 

global optimal. Finally, we demonstrated with simulation 

comparisons torelevant approachesthat the proposed des-

ignacquiressignificantly bettertrade-off performance be-

tween the QoS support and fairness provision with a com-

parably greaterthroughput increase. 
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Appendix A – The Convesity of the Cross-Layer 

Problem (Proof of Proposition 1) 

 

We initially prove that the optimization objective func-

tion in (16)-(18) is convex. The system’s utility objective 

(16), is a summation of utilities of the form ( ),
ij ijf s p =ɶ ɶ  

( )( )( )( )2
ln log 1 /

ij ij ij
s Cp A s+ −⋅ ⋅ɶ ɶ ɶ , where A and C are posi-

tive constraints. The Hessian matrix of ( ),ij ijf s pɶ ɶ  can be 

easily found to be negative semi-definite. Hence each 

( ),ij ijf s pɶ ɶ  is a concave function over the F F
K N K N⋅ + ⋅  

dimensional space ( ),ij ijs pɶ ɶ . Therefore, the system’s utility 

objective (16) is also a concave function, since any positive 

linear combination of concave functions is also a concave 

function.  

Secondly we prove that the cross-layer problem (16)-

(18) is determined over a feasible convex set that satisfies 

all of the involved constraints. The inequality constraints 

(17) are straightforward convex, whereas constraints (18) 

are all affine. This means that the set defined by all con-

straints as well as the system’s utility objective (16) is con-

vex as it is well known that the intersection of convex sets 

is also convex. Additionally, the cross-layer problem laid 

out in (16)-(18) is convex and soa unique global optimalex-

ists, which is obtained in polynomial time.  

Finally, we verify that the feasible set that satisfies con-

straints (11), (12), (13), (17) and (18) is non-empty. Assum-

ing that 
0

j j
u q=  the convex set over ( ),ij ijs pɶ ɶ  is non-

empty since, i.e. for 0
ij
p =ɶ  and 1

ij
s =ɶ , all constraints are 

satisfied. Let us denote 1
S as the feasible set over ij

sɶ  that 

satisfies the subcarrier allocation constraints (11), (12), 

(17) and ( ]0,1
ij
s ∈ɶ , and 2

S  as the feasible set over ij
pɶ that 

satisfies the power constraints (13) and (18). Then in the 

F F
K N K N⋅ + ⋅ dimensional space ( ), ,ij ijs pɶ ɶ  constraints 

(11), (12), (17) and ( ]0,1
ij
s ∈ɶ  of ij

sɶ verify a cylinder with 

base 1
S . Similarly constraints (13) and (18) of ij

pɶ  verify 
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another cylinder with base 2
S . The intersection of the two 

cylindersobviously determines a non-empty set over 

( ),ij ijs pɶ ɶ , which is also convex due to the convexity and 

affinity of all the constraints. This completes the proof of 

Proposition 1. � 

 

 

 

Appendix B – Optimal Allocation Strategies 

(Proofs of Theorems 2&3) 

 

The Lagrangianfunction { } { }( ), , , ,
ij ij

L p s ξ νµɶ ɶ ɶ  of the 

cross-layer problem (16)-(18) is written as: 
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where the vectors ( )1,..., ,..., 0j Kξ ξ ξ ξ= ≥ , 0µ ≥  and 

( )1
,..., ,...,

Fi N
ν ν ν ν=  represent the Lagrangian multipliers 

for the QoSconstraint (17), the power constraint (18) and 

the subcarrier allocation constraint (12), respectively. By 

applying the KKT conditions, the boundary constraints 

( ]0,1
ij
s ∈ɶ  and 0

ij
p ≥ɶ are absorbed and the sufficient con-

ditions for the optimal instantaneous power 
*

ij
pɶ and the 

optimal subcarrier allocation index 
*

ij
sɶ  to be global max-

ima are obtained by: 
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When 
*

0
ij
s =ɶ  then the result is infeasible or it gives a 

local maxima, i.e., 
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p >ɶ  meaning that the 

KKT condition (24) will resolveto a global maximum solu-

tion over ij
pɶ  as: 
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It is easy to seethat (27) is a transcendental algebraic eq-

uation,meaning that its explicit solution is very hard and 

perhaps impossible to be defined. Usually, recursive 

searches are utilized to approximate the solutions resulting 

incomplex and time-consuming procedures. Contrary tothe 

traditional way, we present a new methodology for solving 

such equations that allows us to derive their explicit solu-

tions. 

Let us define 
0

j
b u= and ( ) ( )2

* * 21 /
ij ij ij ij z
p h sη σ + ⋅ ⋅ ⋅ 

 
ɶ ɶ  

x= . Then (27) has the form of ( )( )*

2logijx s x b a⋅ ⋅ − =ɶ  or 

 

( )*

2log
x

ijs x bx a⋅ = +ɶ
. (28) 

 
If we set 2

logb c= , 1c >  then equation (28) becomes 

( )*

2
log /

x

ij
s x c a⋅ =ɶ  and by multiplying both its sides with 

1/ c it becomes: 
 

2 *
log

x

c

ij

x a

c s c

 
=  ⋅  ɶ

. (29) 
 
In addition, by defining that /x cϕ =  then we can de-

note (29) as ( ) ( )*

2log / ,ija s c
ϕ

ϕ = ⋅ɶ  which gives that 

( )*/

2
ija s cϕϕ
⋅

=
ɶ

. Based on Lambert-W function’s properties [24], 

the latter equation resolves into 
( )*/

exp ln 2
ija s c

Wϕ
⋅   =       

ɶ

, 

where ( )W ⋅  denotes the Lambert-W function [24]. By 

substituting ϕ  we obtain: 

 

( ]
* *

*
exp ln 2 ,  2 1, 0,1ij ij

a a

s c s c

ijx c W s
⋅ ⋅

   
   = ⋅ > ∈
       

ɶ ɶ
ɶ

. (30) 

 

With further substitutions of x , a , b  and c  into (30) 
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the optimal power allocation policy 
* *

F FK N K N ij
p× ×

   =    ɶHP  

has individual matrix elements defined as: 

 

( )
( )

2*

0
0 * * 2

1

* 2

2 ln 2*

2
2 exp ln 2 1

j ij ij

u j
j ij z

h

u sij z

ij

ij ij

s
p W

h

ξ η

µ σσ

η

+ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

    
    
    = ⋅ −
    
         

ɶ
ɶ

ɶ

.  

 (31) 

 

Furthermore, we use the KKT condition (25) to derive 

the optimal subcarrier allocation as: 

 

{ } { }( )
( )

( )
( )

** * * *, , , , , , , ,

2 2
* *

2 * 2 2
*

* 2

*

, , , ,
                                        0

log 1

ln 2 1

1

p s p sij ij j i ij ij j i

ij ij

ij

ij ij ij ij ij ij

ij z
ij ij ij

ij z

j

L p s ξ ν

s

p h p h

s p h
s

ξ µ ν ξ µ ν

µ

η η

σ η
σ

ξ

 
 
 
=

∂
= ⇒

′∂

 ⋅ ⋅ ⋅ ⋅ + −
 ⋅ ⋅ ⋅  ⋅ ⋅ +

+ ⋅

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ
ɶ

ɶ* 2

*

2
*

* 0

2 * 2

0

log 1

ij z

i

ij ij ij

ij j

ij z

s

p h
s u

s

σ
ν

η

σ

 
 
  
  
  ⋅
   − = 

   ⋅ ⋅  ⋅ + −   ⋅     
 
 

ɶ
ɶ

ɶ

. 

 (32) 

 

With the substitution of the optimal power allocation 
*

ij
pɶ  in (31) then (32) becomes: 

 

( )

( )( )( )( ) ( )( )( )
( ) ( )( )( )( )

( )( )( )( )

( )

0

0

0

0

* *

2

* *

* 0

2

,

2 exp ln 2 1
log 2 exp ln 2

ln 2 2 exp ln 2

1 0

log 2 exp ln 2

j

j

j

j

ij j

u

u

u

j i
u

ij j

H

W
W

W

s W u

κ

κ

κ

κ

ξ µ

ξ ν

 ⋅ − 
⋅ − 

⋅ ⋅ 
 + ⋅ − =

  ⋅ ⋅ −   
 
 
 

ɶ

�������������������������������������������������������������������

, 

 (33) 

 

with the variable κ  used for brevity and denoted by 

( )( ) ( )( )02
* * * 2

1 / 2 ln 2ju

j ij ij ij zh sκ ξ η µ σ= + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ɶ . We now 

assume that all of the time sharing factors { }*ijsɶ  in (33) are 

equal to each other, i.e., 
*

0.5, ,
ij
s i j= ∀ɶ . The reason we 

make this assumption is to make (33) independent from the 

unknown { }*ijsɶ  and perform the S-NBS decision regarding 

thesubcarrier selection relying on the players’ cooperation and 

each channel’s physical conditions. In other words, given that 

the time-sharing factors { }*ijsɶ  are homogeneous, then 

through ( )* *
,ij jH ξ µ  we can indicate whichof the F

N  sub-

carriers isappropriateto be allocated to each of the K  users, 

according to each channel’s conditions and the S-NBS-based 

cooperation between users8. Consequently, condition (25) 

becomes 
{ } { }( )

( ) ** * * *, , , , , , , ,

*

*

, , , , 0,  if 0 1

0,  if 1
p s p sij ij j i ij ij j i

ij ij ij

ij ij

L p s ξ ν s

s s
ξ µ ν ξ µ ν

µ

 
 
 

=

∂ = < <


∂ > =ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ
 

meaning that the optimal subcarrier index 
*

ij
sɶ  willbeequal 

to one for ( )* * *
,ij j iH ξ µ ν>  otherwise the allocation will-

not occur. This completes the proofs of Theorems 2 &3.   
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