• Title/Summary/Keyword: parameters fitting

Search Result 710, Processing Time 0.025 seconds

Application of Bootstrap Method to Primary Model of Microbial Food Quality Change

  • Lee, Dong-Sun;Park, Jin-Pyo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1352-1356
    • /
    • 2008
  • Bootstrap method, a computer-intensive statistical technique to estimate the distribution of a statistic was applied to deal with uncertainty and variability of the experimental data in stochastic prediction modeling of microbial growth on a chill-stored food. Three different bootstrapping methods for the curve-fitting to the microbial count data were compared in determining the parameters of Baranyi and Roberts growth model: nonlinear regression to static version function with resampling residuals onto all the experimental microbial count data; static version regression onto mean counts at sampling times; dynamic version fitting of differential equations onto the bootstrapped mean counts. All the methods outputted almost same mean values of the parameters with difference in their distribution. Parameter search according to the dynamic form of differential equations resulted in the largest distribution of the model parameters but produced the confidence interval of the predicted microbial count close to those of nonlinear regression of static equation.

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Impmvement of Inverse Fitting Algorinlm of Visible Reflectance Spectrum to Extract Skin Parameters (피부의 특성 추출을 위한 가시광선 반사 스펙트럼의 역 추적 최적화 알고리즘 개선)

  • Choi, Seung-Ho;Im, Chang-Hwan;Jung, Byung-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.179-184
    • /
    • 2007
  • In order to extract more accurate skin parameters, this study was focused on the improvement of the efficiency of a previous inverse fitting algorithm based on genetic algorithms. The algorithm provides the best fitting result of the diffusion approximation model to a VRS (visual reflectance spectroscopy) curve of skin. Simplex and wavelength selection methods were applied to the previous algorithm. Nine skin parameters were inversely extracted from the modeling studies. The revised inverse fitting algorithm was determined to produce an 83% reduction of computation time and a 0.64% reduction of sum of square error, compared to the previous algorithm. In conclusion, we confirmed that the new algorithm provides faster and more accurate solutions for the diffusion approximation model.

Deriving the Effective Atomic Number with a Dual-Energy Image Set Acquired by the Big Bore CT Simulator

  • Jung, Seongmoon;Kim, Bitbyeol;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.171-177
    • /
    • 2020
  • Background: This study aims to determine the effective atomic number (Zeff) from dual-energy image sets obtained using a conventional computed tomography (CT) simulator. The estimated Zeff can be used for deriving the stopping power and material decomposition of CT images, thereby improving dose calculations in radiation therapy. Materials and Methods: An electron-density phantom was scanned using Philips Brilliance CT Big Bore at 80 and 140 kVp. The estimated Zeff values were compared with those obtained using the calibration phantom by applying the Rutherford, Schneider, and Joshi methods. The fitting parameters were optimized using the nonlinear least squares regression algorithm. The fitting curve and mass attenuation data were obtained from the National Institute of Standards and Technology. The fitting parameters obtained from stopping power and material decomposition of CT images, were validated by estimating the residual errors between the reference and calculated Zeff values. Next, the calculation accuracy of Zeff was evaluated by comparing the calculated values with the reference Zeff values of insert plugs. The exposure levels of patients under additional CT scanning at 80, 120, and 140 kVp were evaluated by measuring the weighted CT dose index (CTDIw). Results and Discussion: The residual errors of the fitting parameters were lower than 2%. The best and worst Zeff values were obtained using the Schneider and Joshi methods, respectively. The maximum differences between the reference and calculated values were 11.3% (for lung during inhalation), 4.7% (for adipose tissue), and 9.8% (for lung during inhalation) when applying the Rutherford, Schneider, and Joshi methods, respectively. Under dual-energy scanning (80 and 140 kVp), the patient exposure level was approximately twice that in general single-energy scanning (120 kVp). Conclusion: Zeff was calculated from two image sets scanned by conventional single-energy CT simulator. The results obtained using three different methods were compared. The Zeff calculation based on single-energy exhibited appropriate feasibility.

Improved Interpolating Equation for Industrial Platinum Resistance Thermometer (산업용 백금저항온도계를 위한 향상된 내삽식)

  • Yang, In-Seok;Kim, Yong-Gyoo;Gam, Kee-Sool;Lee, Young-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.109-113
    • /
    • 2012
  • We propose an improved interpolating equation to express temperature-resistance characteristics for modern industrial platinum resistance thermometers (PRTs). Callendar-van Dusen equation which has been widely used for platinum resistance thermometer fails to fully describe temperature characteristics of high quality PRTs and leaves systematic residual when the calibration point include temperatures above $300^{\circ}C$. Expanding Callendar-van Dusen to higher-order polynomial drastically improves the uncertainty of the fitting even with reduced degrees of freedom of the fitting. We found that in the fourth-order polynomial fitting, the third-order and fourth-order coefficients have a strong correlation. Using the correlation, we suggest an improved interpolating equation in the form of fourth-order polynomial, but with three fitting parameters. Applying this interpolating equation reduced the uncertainty of the fitting to 32 % of that resulted from the traditional Callendar-van Dusen. This improvement was better than that from a simple third-order polynomial despite that the degrees of the freedom of the fitting was the same.

Least Square B-Spline Fitting For Surface Measurement (곡면 측정을 위한 최소 자승 비-스플라인 Fitting)

  • Jung, Jong-Yun;Lisheng Li;Lee, Choon-Man;Chung, Won-Jee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • An algorithm for fitting with Least Square is a traditional and an effective method in processing with experimental data. Due to the lack of definite representation, it is difficult to fit measured data with free curves or surfaces. B-Spline is usefully utilized to express free curves and surfaces with a few parameters. This paper presents the combination of these two techniques to process the point data measured from CMM and other similar instruments. This research shows tests and comparison of the simulation results from two techniques.

Equivalent Circuit Modeling Applying Rational Function Fitting (유리함수 근사를 이용한 등가회로 모델링)

  • Paek, Hyun;Ko, Jae-Hyung;Kim, Kun-Tae;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • In this paper, we propose a method that applies Vector Fitting (VF) technique to the equivalent circuit model for RF passive components. These days wireless communication system is getting smaller and smaller. So EMI/EMC is an issue in RF. We can solve PI/SI (Power Integrity/Signal Integrity) that one of EMI/EMC problem apply IFFT for 3D EM simulation multiple with input signal. That is time consuming task. Therefore equivalent circuit model using RF passive component is important. VF schemes are implemented to obtain the rational functions. S parameters of the equivalent circuit model is compared to those of EM simulation in case of the microstrip line structure.

  • PDF

Extraction of Geometric Primitives from Point Cloud Data

  • Kim, Sung-Il;Ahn, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2010-2014
    • /
    • 2005
  • Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the software on a variety of point cloud data will be demonstrated live.

  • PDF

An Efficient Design Method of RF Filters via Optimized Rational-Function Fitting, without Coupling-Coefficient Similarity Transformation (무 결합계수-회전변환의, 최적화된 유리함수 Fitting에 의한 효율적인 RF대역 여파기 설계기법)

  • Ju Jeong-Ho;Kang Sung-Tek;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.202-204
    • /
    • 2006
  • A new method is presented to design RF filters without the Similarity Transform of their coupling coefficient matrix as circuit parameters which is very tedious due to pivoting and deciding rotation angles needed during the iterations. The transfer function of a filter is directly used for the design and its desired form is derived by the optimized rational-function fitting technique. A 3rd order Coaxial Lowpass filter and an 8th order dual-mode elliptic integral function response filter are taken as an example to validate the proposed method.

  • PDF

Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments ( I ) (LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정 ( I ))

  • 맹승진;이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.49-60
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study. GEV distribution for the flood flow data of the applied watersheds was confirmed as the best one among others by the LH-moments ratio diagram and Kolmogorov-Smirnov test. Best fitting order of LH-moments will be derived by the confidence analysis of estimated design flood in the second report of this study.