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Abstract: Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering,

computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter

estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software

consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed

algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms

estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the

measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the

necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the

software on a variety of point cloud data will be demonstrated live.
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1. Introduction

Model reconstruction from point cloud data is a highly rele-

vant subject to computer vision and reverse engineering with

which the real objects should be represented by their geo-

metric model parameters. A fully automatic and generally

applicable solution to model reconstruction might be realized

only through a highly sophisticated hardware and software

technique analyzing all the available information on the ob-

jects, such as point cloud, object database, object surface

color and texture. Certainly, all the necessary technical and

theoretical tools will not be available in the near future. Nev-

ertheless, the aim to increase the degree of automation of

model recognition and reconstruction is ever-present.

If we restrict our interest field to industrial environment, we

find that large portion of man-made objects (e.g. manufac-

turing facilities and workpieces) can be modeled as combina-

tion of exact features, i.e. plane, sphere, cylinder, cone, and

torus [7]. Thus, even if we limit the range of model features

to exact features, there is still large demand on the auto-

matic techniques for model reconstruction, e.g., for reverse

engineering, intelligent robot, and digital factory. As far as

we are aware, there is no supplier of such technique [6], [11].

Under the circumstances mentioned above, we have devel-

oped a software tool for automatic extraction of exact fea-

tures from point cloud, based on our previous work on a

semi-automatic solution [2]. The functionality of the soft-

ware tool is analogous to that of human intelligence search-

ing for exact features in a dark room environment. In this

paper we describe the algorithmic techniques implemented

in the software tool. Beside the experimental result given in

this paper, we will demonstrate live the performance of the

software on a variety of point clouds generated by different

3-D measuring techniques.

2. Parametric Model Reconstruction

2.1. Real Object, Point Cloud and Model Feature

Before we begin describing the algorithmic details of the soft-

ware tool, we like to survey the conditions for parametric

model reconstruction from point cloud (Fig. 1). To bear in

mind is:

• Point cloud is subject to measurement errors

• Model feature represents only roughly the true surface of

real object

• Model parameters are estimated from point cloud, of which

results are subject to the applied estimation method.

This means all the three passages between the three parties

(real object, point cloud, and model feature) cause inevitably

errors during the reconstruction process comprised of 3-D

measurement, model selection and parameter estimation. In

order to layout a feasible technical solution to this inconve-

nient situation, we review the very fact of parametric model

reconstruction.

Real objects
Applications:

computer/robot vision,
reverse engineering

Object description:
shape, size, position,

and rotation parameters

3D-point cloud:
unordered, incomplete,

error-contaminated

3D-measurement:
photogrammetry, CT,

acoustic, tactile method

3D-data processing:
segmentation,

curve/surface fitting

Fig. 1. Parametric model reconstruction of real objects.

2.1.1 Model Features for Real Object

For representing an object surface we can consider three

ways: point model, facet model, and analytic model. The

point model represents an object surface through a set of

points. The usability of the point model is limited practi-

cally to the registration of a second point set, usually, a set

of measurement points. The facet model consists of a set of
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polygons. Although the facet model is suitable for object vi-

sualization and lithography, it does not provide applications

with information on shape, size, position and orientation of

objects. The analytic model describes an object surface by

using mathematical formulas, which is employed by our soft-

ware tool.

There are three description forms of analytic models (curves

and surfaces), i.e. explicit, implicit and parametric form [3],

[4], [9]. With diverse applications handling dimensional mod-

els or objects, the usual description form of curve/surface is

the implicit or the parametric form. In addition, many appli-

cations (e.g. the bin-picking or the obstacle-avoidance task

in robotics) involve describing real objects in terms of shape,

size, position and orientation. Thus, we group the model pa-

rameters a of a curve/surface into form ag, position ap, and

rotation parameters ar as follows:

{
f(ag,x) = 0 : implicit feature

x(ag,u) : parametric feature ,
(1)

X = R−1

ω,ϕ,κx + Xo or x = Rω,ϕ,κ(X − Xo) , (2)

with
aT

, (aT
g ,aT

p ,aT
r )

= (a1, . . . , al, Xo, Yo, Zo, ω, ϕ, κ) .
(3)

The form parameters determine the shape and size of the

canonical model feature (1) defined in a model coordinate

frame xyz and, are invariant to the rigid body motion (2) of

the model feature. Our software tool extracts automatically

the exact features (plane, sphere, cylinder, cone, and torus)

from a given point cloud and, estimates their model param-

eters in terms of form, position, and rotation parameters

(1)–(3).

2.1.2 Point Cloud

Optical 3-D measuring devices available on the current mar-

ket can generate millions of dense 3-D points in a few seconds

[11]. However, the point cloud is usually not dense enough

to cover the details of object surface. This means we should

hold back from undersampling the point cloud. And, it is

generally assumed the point cloud is not ordered. Further-

more, because of the limited accessability of measuring de-

vices to object surface, the point cloud covers only partially

the object surface. On the other hand, with the point cloud

generated by CT technology enjoying a full accessability to

object surface, the segmentation of closely neighboring ob-

ject surfaces is a challenging task. Our software tool can

handle an unordered incomplete and complex point cloud

with a large number of data points.

A measurement point is the probable observation of an un-

known nearest point on object surface to the measurement

point [1]. The distance between the measurement point and

the unknown object point is the true measurement error. In

practice, because the true object surface is unknown, it is

substituted by an associating model feature [7]. The true

measurement error is substituted by the minimum distance

(geometric distance, Euclidean distance) between the model

feature and the measurement point. This error definition

solely outlines the algorithmic functionalities which should

be implemented in the software tool for a reliable and accu-

rate parametric model reconstruction from point cloud. The

minimum distance should be used not only as the decision

measure between the inliers and the outliers of a model fea-

ture (segmentation), but also as the error measure to be min-

imized by the procedures of parameters estimation (model

fitting) [1], [7], [8]. Although the calculation and minimiza-

tion of the minimum distances are computationally expen-

sive, they are of vital importance to a reliable and accurate

parametric model reconstruction from point cloud.

2.2. Orthogonal Distance Fitting

We briefly describe the orthogonal distance fitting (ODF)

that estimates model parameters by minimizing the square

sum of error distances between the model feature and the

given points. Interested readers are referred to [3] for a com-

plete description of the ODF algorithms that estimate the

model parameters in terms of form, position and rotation

parameter (1)–(3).
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Fig. 2. Interpretation of the orthogonal distance fitting as

an energy minimization problem.

The ODF task can be interpreted as an energy minimization

problem illustrated in Fig. 2, with which the energy (cost)

function is defined as

σ
2
0 , (X − X′)TPTP(X − X′) or σ

2

0 , dTPTPd , (4)

where XT = (XT
1 , . . . ,XT

m) and X′T = (X′T
1 , . . . ,X′T

m) are

the coordinate row vectors of the m given (measurement)

points and of the m corresponding points on the model fea-

ture, respectively. The diagonal elements of the weighting

matrix PTP correspond to the spring constants {ki}
m
i=1 in

Fig. 2. To minimize the cost function (4) the ODF algo-

rithm minimizes not only the square sum but also every sin-

gle distance {di}
m
i=1 between the model feature and the given

points. Because the minimum distances {di}
m
i=1 are nonlin-

ear to the model parameters, the ODF task is inherently a

nonlinear minimization problem that must be solved through

iteration. The computing cost and the memory space usage

of the ODF algorithms in [3] are proportional to the number

of data points, thus the algorithms are suitable for processing

a massive point cloud. By investigating the resulting cost (4)

and the parameter covariance matrix, we can test the over-

all performance and the reliability of the model selection and

model fitting.

3. Automatic Model Extraction

Given a set of points, the feature extraction procedure con-

sists of two substantial sessions of segmentation and model

fitting, respectively (Fig. 1). At this point we confront a
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chicken-and-egg dilemma. Namely, without the geometric

information on model feature we cannot decide between the

inliers and the outliers of model feature (segmentation). Re-

versely, without the inliers we cannot get the geometric in-

formation on model feature (model fitting). To resolve this

information deadlock, either of the two sides should provide

the seed information triggering the other side.

3.1. Model Selection and Initial Model Parameters

We obtain the geometric seed information on model feature

from a small patch of point cloud, which is comparable with

touching an object then guessing its geometry in a dark room

environment:

1. Cut (touch) a small initial patch from the point cloud.

2. Fit a plane to the patch through the moment method

(noniterative linear ODF) [8].

3. Fit a quadric surface to the patch through ODF starting

from the plane parameters.

4. Get the orthogonal footing point on the surface from the

mass center of the patch.

5. Calculate the surface normal, principal curvatures and

axes at the footing point [5].

6. Choose the model type for the patch by analyzing the

signed curvature radii (Fig. 3).

7. Derive the size, center and orientation parameters of the

chosen model feature from the surface normal, curvature

radii and principal axes at the footing point.

8. Fit the initial model feature to the patch through ODF

starting from the model parameters derived in the last step.

Elli ptic: k1·k2 ! 0 Hyperbolic: k1·k2 � 0Parabolic: k1·k2   0

(a)

r2

r1

Planar

Elliptic

Parabolic

Hyperbolic

Uncertain

(b)

Fig. 3. Classification of local surface types according to the

two principal curvatures k1 and k2. (a) Flat for plane,

elliptic for sphere or torus, parabolic for cylinder or cone,

and hyperbolic for torus; (b) Curvature radius map for

local surface types (r1 = 1/k1, r2 = 1/k2).

The classification of local surface types (Fig. 3a [5]) according

to the local curvatures (including the mean and Gaussian

curvatures) of a curved surface fitted to a small point patch

is known in literature [10]. Instead of the curvatures, our

software tool employs the curvature radii which correspond

to the feature radius (Fig. 3b). During the above procedures

the ODF algorithm plays an important role in determining

the parameters of the intermediate quadric surface and of

the initial model feature from the small point patch. Other

fitting algorithms than the ODF algorithm, which minimize

some error measures other than the minimum distance, are

prone to fail to fit a model feature to a small point patch.

We address the influencing factors on the procedures shown

above:

Model scale. The aperture radius of the small patch must be

chosen by considering the curvature radius of the model fea-

tures to be extracted. At the same time, it must be at least

5–10 times larger than the accuracy of point measurement.

Model uncertainty. If the rms distance error of quadric fit-

ting is larger than the measurement accuracy, we ignore the

current small patch. If either of the two absolute curva-

ture radii is too small relatively to the aperture radius (see

Fig. 3b), we ignore the current small patch. We put some tol-

erances to the ratio of curvature radii for classifying surface

types. If both the absolute curvature radii are larger than

10–30 times of the aperture radius, we assume a plane. In

the case of elliptic surface, we choose the smaller curvature

radius as the sphere radius.

Model ambiguity. In the case of parabolic surface, we as-

sume a cone. When the resulting vertex angle becomes small

enough at the end of the overall process (see Fig. 4), we as-

sume a cylinder and continue the process. Torus should be

extra handled, since it contains all the local surface types

(elliptic for outer face, parabolic for top/bottom face, and

hyperbolic for inner face of either of the two chained tori).

ODF task

Point
cloud

Segmentation &
outlier elimination

Inlier
points

Model parameters,
covariance, residuals

Repeat?Add to
object list

Refining

yes

no

Clear inlier
points

Touch
points

Initial
model

Model
fitting

Start/restart

Fig. 4. ”Touch & Clear” in point cloud for automatic feature

extraction.

3.2. Overall Process and Experimental Result

Once the model type and parameters are initialized, the in-

teraction loop between the segmentation and the model fit-

ting can be triggered. As noted in Sect. 2.1., the minimum

distance of a given point to the model feature should be

used as the decision measure whether the point is an in-

lier of model feature. However, with regard to a specific

model feature, the large part of a point cloud is occupied

by plain outliers, causing a high computing cost of unneces-

sarily calculating the minimum distances. Through utilizing
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the parameter grouping (1)–(3) and the properties of implicit

model description, we can efficiently eliminate the plain out-

liers from the point cloud. The overall process of automatic

feature extraction can be described as follows (see Fig. 4):

1. Initialize the model feature (model type, size, position

and orientation) (Sect. 3.1.).

2. Stamp all the points lying outside the domain box as plain

outlier.

3. Except for the inlier candidates lying between the two

(inner and outer) iso-features of model feature, stamp all

points as plain outlier.

4. Evaluate the rms distance of the inlier candidates to the

model feature.

5. Stamp only the inlier candidates as inlier, of which dis-

tances to the model feature are not larger than 2–3 times of

the rms distance.

6. Update the model parameters through ODF to the inliers.

7. If necessary, repeat from the second step (’Refining’ in

Fig. 4).

8. Save the model parameters, and, clear the inliers from the

point cloud.

9. Repeat from the first step until no more dense point patch

can be found (touched).

As an experimental example for automatic feature extraction

from point cloud, we applied our software tool to a point

cloud of about 68,600 points generated by stripe-projection

method (structured-light method) (Fig. 5a). All the relevant

model features could be extracted fully automatically and

correctly (Fig. 5b).

4. Summary

We have developed a software tool for a fully-automatic ex-

traction of exact features from unordered incomplete and

error-contaminated point cloud. The necessary seed infor-

mation for the model selection, segmentation and model fit-

ting could be obtained from an intermediate quadric surfaces

fitted to small patches of point cloud. The geometric er-

ror measure is of vital importance to both the segmentation

and the model fitting, although the required computing cost

is relatively high. In order to save the computing cost of

segmentation, we exploited the parameter grouping and the

properties of implicit model description. We demonstrated

the outstanding performance of the software tool on a set

of real measurement points generated by stripe-projection

method.
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