• Title/Summary/Keyword: parameter characterization

Search Result 264, Processing Time 0.027 seconds

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

The effects of drag reducing polymers on flow stability : Insights from the Taylor-Couette problem

  • Dutcher, Cari S.;Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.213-223
    • /
    • 2009
  • Taylor-Couette flow (i.e., flow between concentric, rotating cylinders) has long served as a paradigm for studies of hydrodynamic stability. For Newtonian fluids, the rich cascade of transitions from laminar, Couette flow to turbulent flow occurs through a set of well-characterized flow states (Taylor Vortex Flow, wavy Taylor vortices, modulated wavy vortices, etc.) that depend on the Reynolds numbers of both the inner and outer cylinders ($Re_i$ and $Re_o$). While extensive work has been done on (a) the effects of weak viscoelasticity on the first few transitions for $Re_o=0$ and (b) the effects of strong viscoelasticity in the limit of vanishing inertia ($Re_i$ and $Re_o$ both vanishing), the viscoelastic Taylor-Couette problem presents an enormous parameter space, much of which remains completely unexplored. Here we describe our recent experimental efforts to examine the effects of drag reducing polymers on the complete range of flow states observed in the Taylor-Couette problem. Of particular importance in the present work is 1) the rheological characterization of the test solutions via both shear and extensional (CaBER) rheometry, 2) the wide range of parameters examined, including $Re_i$, $Re_o$ and Elasticity number E1, and 3) the use of a consistent, conservative protocol for accessing flow states. We hope that by examining the stability changes for each flow state, we may gain insights into the importance of particular coherent structures in drag reduction, identify simple ways of screening new drag reducing additives, and improve our understanding of the mechanism of drag reduction.

Delamination behaviors of GdBCO CC tapes under different transverse loading conditions

  • Gorospe, Alking B.;Bautista, Zhierwinjay M.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.13-17
    • /
    • 2015
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with delamination problem of multi-layered CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal cycling. The CC tape might also experience cyclic loading due to the energizing scheme (on - off) during operation. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in REBCO CC tapes becomes critical. In this study, transverse tensile tests were conducted under different loading conditions using different size of upper anvils on the GdBCO CC tapes. The mechanical and electromechanical delamination strength behaviors of the CC tapes under transverse tensile loading were examined and a two-parameter Weibull distribution analysis was conducted in statistical aspects. As a result, the CC tape showed similar range of mechanical delamination strength regardless of cross-head speed adopted. On the other hand, cyclic loading might have affected the CC tape in both upper anvil sizes adopted.

Bioinformatics based Identification and Characterization of Epoxide Hydrolase of Gordonia westfalica for the Production of Chiral Epoxides (Bioinformatics를 활용한 토양미생물인 Gordonia westfalica Epoxide Hydrolase 생촉매 개발 및 Chiral Epoxides 제조 특성 분석)

  • Lee Soo Jung;Lee Eun Jung;Kim Hee Sook;Lee Eun Yeol
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.311-316
    • /
    • 2005
  • Epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis from racemic epoxides. Various microorganisms were identified to possess a EH activity by multiple sequence alignment and analysis of conserved domain sequence from genomic and megaplasmid sequence data. We successfully isolated Gordonia westfalica possessing EH activity from various microbial strains from culture type collections. G. westfalica exhibited (R)-styrene oxide preferred enantioselective hydrolysis activity. Chiral (S)-styrene oxide with high optical purity $(>\;99\%)\;ee)$ and yield of $36.5\%$ was obtained from its racemate using whole-cell of G. westfalica.

A Study on the Variation of Mechanical Properties Due to Thermal Aging in 2.25Cr-1Mo Boiler Tube Steel (2.25Cr-1Mo 강의 열화와 기계적 성질변화에 관한 연구)

  • Jeong, Hee-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1372-1381
    • /
    • 1996
  • As recieved boiler tuve steel was aged artificially at $650^{\circ}C$ and$690^{\circ}C$ for various time duration to simulate the material deterioration which could be occurred during the operation of fossiol power plants. And the tensile tests, the microhardness tests and the characterization of carbides formed in the aging process were performed to asses the relationship between the mechanical properties and the effect of thermal aging. Furthernore, the amout of Mo-rich carbide were investigated by ondestructive method by noticing the fact that formation of Mo-rich carbide were investigated by ondestructive melthod by noticing the fact that formation of Mo-rich carbides($Mo_6C$) which stabilizes lastly affects the mechanical properties. It was known that the microhardness results of service exposed materials were similar to the ones which are aged at $650^{\circ}C$. The room temperature measurement showed small variation in the yield points and ultimate strength in materials aged at $650^{\circ}C$. Those properties at $540^{\circ}C$ showed the abrupt decrease compared with as received material even if short aging time. And it was found that $650^{\circ}C$ $690^{\circ}C$ aging cause different effects on mechanical properties, although the temperature time parameters(LMP;Larson-Miller parameter) are same. And it was concluded that the aigng at $650^{\circ}C$ is more appropriate to simulate the service exposed condition. Finally, the relationship between high temperature tensile properties and Ip values were established, which offers a potential way of reliability tests onthe power plant components.

Purification and Characterization of HCV RNA-dependent RNA Polymerase from Korean Genotype 1b Isolate: Implications for Discovery of HCV Polymerase Inhibitors

  • Kim, Jeong-Min;Lee, Mi-Kyoung;Kim, Yong-Zu
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.285-291
    • /
    • 2005
  • The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is the viral RNA-dependent RNA polymerase (RdRp), which is the essential catalytic enzyme for the viral replication and is an appealing target for the development of new therapeutic agents against HCV infection. A small amount of serum from a single patient with hepatitis C was used to get the genome of a Korean HCV isolate. Sequence analysis of NS5B 1701 nucleotides showed the genotype of a Korean isolate to be subtype 1b. The soluble recombinant HCV NS5B polymerase lacking the C-terminal 24 amino acids was expressed and purified to homogeneity. With the highly purified NS5B protein, we established in vitro systems for RdRp activity to identify potential polymerase inhibitors. The rhodanine family compounds were found to be potent and specific inhibitors of NS5B from high throughput screening (HTS) assay utilizing the scintillation proximity assay (SPA) system. The binding mode of an inhibitor was analyzed by measuring various kinetic parameters. Lineweaver-Burk plots of the inhibitor suggested it binds not to the active site of NS5B polymerase, but to an allosteric site of the enzyme. The activity of NS5B in in vitro polymerase reactions with homopolymeric RNA requires interaction with multiple substrates that include a template/primer and ribonucleotide triphosphate. Steady-state kinetic parameter, such as Km, was determined for the ribonucleotide triphosphate. One of compounds found interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitively with respect to UTP. Furthermore, we also investigated the ability of the compound to inhibit NS5B-directed viral RNA replication using the Huh7 cell-based HCV replicon system. The investigation is potentially very useful for the utility of such compounds as anti-hepatitic agents.

A Study on a Long-term Demand Forecasting and Characterization of Diffusion Process for Medical Equipments based on Diffusion Model (확산 모형에 의한 고가 의료기기의 수요 확산의 특성분석 및 중장기 수요예측에 관한 연구)

  • Hong, Jung-Sik;Kim, Tae-Gu;Lim, Dar-Oh
    • Health Policy and Management
    • /
    • v.18 no.4
    • /
    • pp.85-110
    • /
    • 2008
  • In this study, we explore the long-term demand forecasting of high-price medical equipments based on logistic and Bass diffusion model. We analyze the specific pattern of each equipment's diffusion curve by interpreting the parameter estimates of Bass diffusion model. Our findings are as follows. First, ultrasonic imaging system, CT are in the stage of maturity and so, the future demands of them are not too large. Second, medical image processing unit is between growth stage and maturity stage and so, the demand is expected to increase considerably for two or three years. Third, MRI is in the stage of take-off and Mammmography X-ray system is in the stage of maturity but, estimates of the potential number of adopters based on logistic model is considerably different to that based on Bass diffusion model. It means that additional data for these two equipments should be collected and analyzed to obtain the reliable estimates of their demands. Fourth, medical image processing unit have the largest q value. It means that the word-of-mouth effect is important in the diffusion of this equipment. Fifth, for MRI and Ultrasonic system, q/p values have the relatively large value. It means that collective power has an important role in adopting these two equipments.

Aging Degradation Assessment of Materials by Ultrasonic Characterization (초음파 특성을 이용한 경년열화 평가)

  • Park, Un-Su;Park, Ik-Keun;Kim, Duck-Hee;Ahn, Hyung-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2002
  • An attempt was made to evaluate the changes of microstructures and mechanical properties with increasing aging time in 2.25Cr-1Mo steel. In this study, it was verified the feasibility of the evaluation for degraded 2.25Cr-1Mo steel by isothermal heat treatment at $630^{\circ}C$ up to 1,000 hours using surface SH wave and investigated the change of attenuation coefficient and propagation time. Attenuation coefficient had a tendency to increase according to degradation and propagation time drastically in the beginning of deterioration. A good correlation between ultrasonic attenuation coefficient and hardness was found, which made sure that attenuation coefficient is an potential parameter for evaluation of aging degradation. In addition, it has verified experimentally the frequency dependence of ultrasonic group velocity and attenuation coefficient using wavelet transform.

Development of Sound Quality Index with Characterization of BSR Noise in a Vehicle (자동차 BSR 소음특성과 음질 인덱스 개발)

  • Shin, Su-Hyun;Kim, Duck-Whan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.447-452
    • /
    • 2012
  • Among the various elements affecting a customer's evaluation of automobile quality, buzz, squeak and rattle (BSR) are considered to be major factors. In most vehicle manufacturers, the BSR problems are solved by find-fix method with the vehicle road test, mainly due to various excitation sources, complex generation mechanism and subjective response. The aim of this paper is to develop the integrated experimental method to systematically tackle the BSR problems in early stage of the vehicle development cycle by resolving these difficulties. To achieve this aim, the developed experimental method ought to include the following requirements: to find and fix the BSR problem for modules instead of a full vehicle in order to tackle the problem in the early stage of the vehicle development cycle; to develop the exciter system including the zig and road-input-signal reproducing algorithm; to automatically localize the source region of BSR; to develop sound quality index that can be used to assess the subjective responses to BSR. Also, the BSR sound quality indexes based on the Zwicker's sound quality parameters using a multiple regression analysis. The four sound metrics from Zwicker's sound quality parameter are computed for the signals recorded for eight BSR noise source regions localized by using the acoustic-field visualized results. Then, the jury test of BSR noise are performed for participants. On a basis of the computed sound metrics and jury test result, sound quality index is developed to represent the harsh of BSR noise. It is expected that the developed BSR detection system and sound quality indexes can be used to reduce the automotive interior BSR noise in terms of subjective levels as well as objective levels.

  • PDF

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.345-353
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do parameter inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision to market software, the conditional failure rate is an important variables. In this case, finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of polynomial hazard function.