• Title/Summary/Keyword: pR-module

Search Result 116, Processing Time 0.026 seconds

On Quasi-Baer and p.q.-Baer Modules

  • Basser, Muhittin;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.255-263
    • /
    • 2009
  • For an endomorphism ${\alpha}$ of R, in [1], a module $M_R$ is called ${\alpha}$-compatible if, for any $m{\in}M$ and $a{\in}R$, ma = 0 iff $m{\alpha}(a)$ = 0, which are a generalization of ${\alpha}$-reduced modules. We study on the relationship between the quasi-Baerness and p.q.-Baer property of a module MR and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an ${\alpha}$-compatible module $M_R$ (1) $M_R$ is p.q.-Baer module iff $M[x;{\alpha}]_{R[x;{\alpha}]}$ is p.q.-Baer module. (2) for an automorphism ${\alpha}$ of R, $M_R$ is p.q.-Baer module iff $M[x,x^{-1};{\alpha}]_{R[x,x^{-1};{\alpha}]}$ is p.q.-Baer module.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

A Note on c-Separative Modules

  • Chen, Huanyin
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.357-361
    • /
    • 2007
  • A right R-module P is $c$-separative provided that $$P{\oplus}P{{c}\atop{\simeq_-}}P{\oplus}Q{\Longrightarrow}P{\simeq_-}Q$$ for any right R-module Q. We get, in this paper, two sufficient conditions under which a right module is $c$-separative. A ring R is a hereditary ring provided that every ideal of R is projective. As an application, we prove that every projective right R-module over a hereditary ring is $c$-separative.

  • PDF

ON SOME PROPERTIES OF MALCEV-NEUMANN MODULES

  • Zhao, Renyu;Liu, Zhongkui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.445-456
    • /
    • 2008
  • Let M be a right R-module, G an ordered group and ${\sigma}$ a map from G into the group of automorphisms of R. The conditions under which the Malcev-Neumann module M* ((G)) is a PS module and a p.q.Baer module are investigated in this paper. It is shown that: (1) If $M_R$ is a reduced ${\sigma}$-compatible module, then the Malcev-Neumann module M* ((G)) over a PS-module is also a PS-module; (2) If $M_R$ is a faithful ${\sigma}$-compatible module, then the Malcev-Neumann module M* ((G)) is a p.q.Baer module if and only if the right annihilator of any G-indexed family of cyclic submodules of M in R is generated by an idempotent of R.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

PROJECTIVE REPRESENTATIONS OF A QUIVER WITH THREE VERTICES AND TWO EDGES AS R[x]-MODULES

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.343-352
    • /
    • 2012
  • In this paper we show that the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\longrightarrow}0{\longrightarrow}P[x]$ is a projective representation of a quiver Q as $R[x]$-modules, but $P[x]{\longrightarrow}0{\longrightarrow}0$ is not a projective representation of a quiver Q as $R[x]$-modules, if $P{\neq}0$. And we show a representation $0{\longrightarrow}P[x]\longrightarrow^{id}P[x]$ of a quiver Q is a projective representation, if P is a projective left R-module, but $P[x]\longrightarrow^{id}P[x]{\longrightarrow}0$ is not a projective representation of a quiver Q as $R[x]$-modules, if $P{\neq}0$. Then we show a representation $P[x]\longrightarrow^{id}P[x]\longrightarrow^{id}P[x]$ of a quiver Q is a projective representation, if P is a projective left R-module.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

THE DETERMINANT MAP FROM THE AUTOMORPHISM GROUP OF A PROJECTIVE R-MODULE TO THE UNIT GROUP OF R

  • Lee, Sang Cheol;Kim, Sang-hee
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • Let P be a finitely generated projective module over a commutative ring R with identity. If P has finite rank, then it will be shown that the map ${\varphi}:Aut_R(P){\rightarrow}U(R)$ defined by ${\varphi}({\alpha})={\det}({\alpha})$ is locally surjective and $Ker({\varphi})=SL_R(P)$.

PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • AS R[x]-MODULES

  • Park, Sangwon;Kang, Junghee;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.243-252
    • /
    • 2010
  • In this paper we extend the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left R-modules to the projective properties of representations of quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\rightarrow}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. And we show $0{\rightarrow}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module if and only if $0{\rightarrow}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. Then we show if P is a projective left R-module then $R[x]\longrightarrow^{id}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. We also show that if $L\longrightarrow^{id}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module, then $L[x]\longrightarrow^{id}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules.

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF