• Title/Summary/Keyword: pH of silage

Search Result 399, Processing Time 0.024 seconds

Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace

  • Hu, Xiaodong;Hao, Wei;Wang, Huili;Ning, Tingting;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.502-510
    • /
    • 2015
  • The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages.

The Effect of Tillage Methods after Application of Liquid Pig Manure on Silage Barley Growth and Soil Environment in Paddy Field (돈분액비 시용 논에서 경운방법이 청보리 생육 및 토양환경에 미치는 영향)

  • Yang, Chang-Hyu;Lee, Sang-Bog;Kim, Taek-Kyum;Ryu, Jin-Hee;Yoo, Chul-Hyun;Lee , Jeong-Jun;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.285-292
    • /
    • 2008
  • To investigate the effect of tillage methods on the silage barely growth and the soil environment in paddy field, liquid pig manure(LPM) was applied after harvesting rice at Jisan series soil for 2 years. Five plots, a LPM applied rate as N%; 0, 100, 150, 200(basal dressing) and 100(basal dressing)+50(additional fertilizer) were divided by tillage methods; non-tillage, non-tillage+rice straw and rotary tillage method. Emission amounts of $NH_3$ gas highly decreased in the rotary tillage and the non-tillage+rice straw plot compared to non-tillage plot. The contents of soil organic matter and exchangeable cation were increased in the applied LPM plot. $NH_4-N$ and $NO_3-N$ contents in soil were the highest in the non-tillage+rice straw plot and followed by the rotary tillage and highly decreased along with the growth of plant. Run-off rate of mineral components were higher in order of the rotary tillage plot£æthe non-tillage plot£æthe non-tillage+rice straw plot and then leached to $SO_4$, $NO_3-N$, K plentifully. The yield of silage barley in dry weight was higher in order of the non-tillage+rice straw plot>the rotary tillage plot>the non-tillage plot. To estimate the feed value of silage barley, crude protein, acid detergent fiber(ADF) and neutral detergent fiber(NDF) contents were analyzed. Crude protein and ADF contents were the highest at rotary tillage N150% plot as 9.7 and 29.4%, respectively. NDF contents was the highest at non-tillage+rice straw N150% plot as 56.7%. In conclusion, we recommend not to incinerate rice straw and to apply LPM at non-tillage status in cultivating the silage barley. This may prevent water pollution and increase barley yields.

Chemical Composition and Fermentation Characteristics of the Corn Silage During Feedout at Yonchon of Gyeonggi-do (연천지역에 있어서 옥수수 사일리지의 개봉 후 경과기간에 따른 시료성분 및 발효품질)

  • Sung Kyung Il;Kim Gon Sik;Lee June Woo;Kim Byung Wan;Kim Sang Rok
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • The purpose of this study is to discuss the ways to consistently feed high quality corn silage(CS). This study evaluated the effect of the corn silage, after a certain time has elapsed, on the chemical composition and fermentation characteristics after feedout during the winter feeding period of the CS. Six samples of CS from four dairy farms(E1, E2, E3, and L1 ) were taken in order to feed the milking cows over a winter feeding Period from November of 2002 until February of the following year, 2003(six samples were taken at the fellowing dates in the following order: sample one was taken on the 23rd Nov. 2002, sample two on the 5th of Dec. 2002, 3rd sample on the 23rd of Dec. 2002, 4th sample on the 7th of Jan. 2003, 5th sample on the 22nd of Jan. 2003, and the 6th sampling was carried out on the 6th of Feb. 2003) at the three sampling sites after the opening of the trench silos at intervals of 15 days. In the dry matter contents of CS, there wasn't any specific tendency according to the elapsed time in the range of 21.3~$27.3\%$ at all low dairy farm(E1, E2, E3, and L1). And the average dry matter contents were 24.1, 25.9, 23.6, and $20.4\%$. Considering the Proper amount of the dry matter of CS during the ripen yellow stage, the appropriate moisture content was $33\%$ (NRC, 1989), and these dry matter contents were all low. A consistent tendency was not found in the contents of CS. The average of CP contents were 10.2, 8.0, 8.5, and $9.8\%$ at the E1, E2, E3, and L1 farms, and there were significant differences. The TDN contents of CS were not different among forms according to the time elapsed. The pH, according to the time elapsed after opening of the CS, there were no differences at each of E1, E2, E3, md L1 farms. Average pH were 3.5, 3.9, 3.6, and 4.1, md all of them were in normal range. In the lactic acid contents of CS, a consistent tendency was not found among four farms. But according to the time elapsed. there was a goat difference from 1.13~$7.8\%$ The acetate, propionate, and butyrate contents of CS were very low. In this study, there was no significant difference in the CS's chemical composition and fermentation characteristics according to the elapsed time at all four dairy farms. Considering the proper dry matter contents of CS during the ripen yellow stage, the appropriate dry matter content was $33\%$, and dry matter contents of few farms were all low. To enhance the quality of corn silage should be ensiled com at proper dry matter content range from 28 to $35\%$ Therefore, content of the corn plant should be always be closely monitored prior to beginning harvest.

Effects of purified lignin on in vitro rumen metabolism and growth performance of feedlot cattle

  • Wang, Yuxi;McAllister, Tim A.;Lora, Jairo H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • Objective: The objectives were to assess the effects of purified lignin from wheat straw (sodium hydroxide dehydrated lignin; SHDL) on in vitro ruminal fermentation and on the growth performance of feedlot cattle. Methods: In vitro experiments were conducted by incubating a timothy-alfalfa (50:50) forage mixture (48 h) and barley grain (24 h) with 0, 0.25, 0.5, 1.0, and 2.0 mg/mL of rumen fluid (equivalent to 0, 2, 4, 8, and 16 g SHDL/kg diet). Productions of $CH_4$ and total gas, volatile fatty acids, ammonia, dry matter (DM) disappearance (DMD) and digestion of neutral detergent fiber (NDF) or starch were measured. Sixty Hereford-Angus cross weaned steer calves were individually fed a typical barley silage-barley grain based total mixed ration and supplemented with SHDL at 0, 4, 8, and 16 g/kg DM for 70 (growing), 28 (transition), and 121 d (finishing) period. Cattle were slaughtered at the end of the experiment and carcass traits were assessed. Results: With forage, SHDL linearly (p<0.001) reduced 48-h in vitro DMD from 54.9% to 39.2%, NDF disappearance from 34.1% to 18.6% and the acetate: propionate ratio from 2.56 to 2.41, but linearly (p<0.001) increased $CH_4$ production from 9.5 to 12.4 mL/100 mg DMD. With barley grain, SHDL linearly increased (p<0.001) 24-h DMD from74.6% to 84.5%, but linearly (p<0.001) reduced $CH_4$ production from 5.6 to 4.2 mL/100 mg DMD and $NH_3$ accumulation from 9.15 to $4.49{\mu}mol/mL$. Supplementation of SHDL did not affect growth, but tended (p = 0.10) to linearly reduce feed intake, and quadratically increased (p = 0.059) feed efficiency during the finishing period. Addition of SHDL also tended (p = 0.098) to linearly increase the saleable meat yield of the carcass from 52.5% to 55.7%. Conclusion: Purified lignin used as feed additive has potential to improve feed efficiency for finishing feedlot cattle and carcass quality.

Effect of Feeding High Forage Diets with Supplemental Fat on Blood Metabolites, Rumen Fermentation and Dry Matter Digestibility in Dairy Cows

  • Abdullah, M.;Young, J.W.;Tyler, H.D.;Mohiuddin, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.451-456
    • /
    • 2000
  • Fifty mid-lactation Holstein cows were used in a six-week feeding trial to study effects of high-forage, and high-fat diets on blood constituents, rumen fermentation and dry matter digestibility. Cows were divided into 10 replicates, each consisting of five cows. Each cow was assigned to a control (diet 1) or one of the four experimental diets (high-forage (75%), high-fat (7.5%) (diet 2); high-forage. medium-fat (5.0%) (diet 3); medium forage (65%), high-fat (diet 4); medium-forage, medium-fat (diet 5)), or a control diet containing about 50% forage and 2% fat. All diets were isonitrogenous (17.7% crude protein). The forage mixture consisted of 20% alfalfa hay, 40% alfalfa haylage, and 40% corn silage. Supplemental fat included 80% rumen-protected fat and 20% yellow grease. A non-significant difference was observed in concentrations of blood glucose for cows on different experimental and control diets. Plasma nonesterified fatty acids (NEFA) were higher in cows consuming experimental diets than those consuming the control diet. However, differences in NEFA concentrations in the plasma of cows consuming diets with different forage and fat levels were not significant. Rumen pH, concentration of volatile fatty acids (VFA) in rumen contents, and dry matter digestibility of control and experimental diets, and diets with different levels of forage and supplemental fat did not differ significantly.

Effects of Varying Levels of Whole Cottonseed on Blood, Milk and Rumen Parameters of Dairy Cows

  • Oguz, F. Karakas;Oguz, M.N.;Buyukoglu, T.;Sahinduran, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.852-856
    • /
    • 2006
  • Four lactating Holstein cows were used in a $4{\times}4$ Latin-square design to determine the effects of various levels of whole cottonseed (WCS) in diets on parameters including milk (yield and fat content), rumen fluid (pH, ammonia and TVFA) and blood (${\beta}$-carotene, vit. A, vit. E, urea, $NH_3$, Ca, P and Mg levels). Cows consumed 0, 1, 2 or 3 kg WCS per day. No significant differences were observed among the groups on analysed parameters except plasma vitamin E concentration. In addition, when the amount of cottonseed was increased, milk yield and milk fat content also tended to increase but this increase was not statistically significant. In conclusion, feeding of WCS up to 3 kg per day with ad libitum maize silage did not cause negative effects on milk yield, milk fat and blood vitamin levels in the short term in dairy cows.

Manipulation of the Rumen Ecosystem to Support High-Performance Beef Cattle - Review -

  • Jouany, J.P.;Michalet-Doreau, B.;Doreau, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.96-114
    • /
    • 2000
  • Genetically selected beef cattle are fed high-energy diets in intensive production systems developed in industrial countries. This type of feeding can induce rumen dysfunctions that have to be corrected by farmers to optimise cost-effectiveness. The risk of rumen acidosis can be reduced by using slowly degradable starch, which partly escapes rumen fermentation and goes on to be digested in the small intestine. Additives are proposed to stabilise the rumen pH and restrict lactate accumulation, thus favouring the growth of cellulolytic bacteria and stimulating the digestion of the dietary plant cell wall fraction. This enhances the energy value of feeds when animals are fed maize silage for example. Supplementation of lipids to increase energy intake is known to influence the population of rumen protozoa and some associated rumen functions such as cellulolysis and proteolysis. The end products of rumen fermentation are also changed. Lipolysis and hydrogenation by rumen microbes alter the form of fatty acids supplied to animals. This effect is discussed in relation with the quality of lipids in beef and the implications for human health. Conditions for optimising the amount of amino acids from microbial proteins and dietary by-pass proteins flowing to the duodenum of ruminants, and their impact on beef production, are also examined.

Effect of Tillage System on the Forage Production and Soil Characteristics of Silage Corn (경운방법이 사일리지용 옥수수의 사초생산성 및 토양특성에 미치는 영향)

  • Kim, Jong-Duk;Kwon, Chan-Ho;Gu, Yang-Hae;Shin, Mung-Su
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • No comprehensive tillage system of corn (Zea mays L.) has been conducted in Korea. Therefore, this experiment was carried to determine soil characteristics, weed and forage production in tillage system of corn. Plot was allotted to one of four treatments in a randomized block design using tillage system. The four treatments were (T1) conventional tillage, plow and rotary till, (T2) rotary till, (T3) disk till, and (T4) no-till system. In soil characteristics before planting and after harvest of corn, pH and organic matter at planting date was higher than at harvest date, however, there were no difference among tillage system. Days from planting to silking of no-till was the longest among tillage system. Lodging resistance of disk and no-till were higher than conventional and rotary till due to its thicken stem diameter. Main weed in corn field are barnyard grass (Echinochloa crusgall), velvetleaf(Abutilon avicennae), crabgrass (Digitatia saguinalis), and redroot pigweed (Amaranthus retroflexus). Weed population was lower in no-till than others tillage system. Dry matter (DM) content and ear percentage of conventional and rotary till were higher than others in corn field. However, DM and total digestible nutrients (TDN) yields of disk and no-till were higher than those of conventional and rotary till. Therefore, disk and no-till are more suitable in corn silage system because of high lodging resistance and forage yield, and low weed population.

Evaluation of the nutritional value of locally produced forage in Korea using chemical analysis and in vitro ruminal fermentation

  • Ki, Kwang Seok;Park, Su Bum;Lim, Dong Hyun;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.355-362
    • /
    • 2017
  • Objective: The use of locally produced forage (LPF) in cattle production has economic and environmental advantages over imported forage. The objective of this study was to characterize the nutritional value of LPF commonly used in Korea. Differences in ruminal fermentation characteristics were also examined for the LPF species commonly produced from two major production regions: Chungcheong and Jeolla. Methods: Ten LPF (five from each of the two regions) and six of the most widely used imported forages originating from North America were obtained at least three times throughout a year. Each forage species was pooled and analyzed for nutrient content using detailed chemical analysis. Ruminal fermentation characteristics were also determined by in vitro anaerobic incubations using strained rumen fluid for 0, 3, 6, 12, 24, and 48 h. At each incubation time, total gas, pH, ammonia, volatile fatty acid (VFA) concentrations, and neutral detergent fiber digestibility were measured. By fitting an exponential model, gas production kinetics were obtained. Results: Significant differences were found in the non-fiber carbohydrate (NFC) content among the forage species and the regions (p<0.01). No nutrient, other than NFC, showed significant differences among the regions. Crude protein, NFC, and acid detergent lignin significantly differed by forage species. The amount of acid detergent insoluble protein tended to differ among the forages. The forages produced in Chungcheong had a higher amount of NFC than that in Jeolla (p<0.05). There were differences in ruminal fermentation of LPF between the two regions and interactions between regions and forage species were also significant (p<0.05). The pH following a 48-h ruminal fermentation was lower in the forages from Chungcheong than from Jeolla (p<0.01), and total VFA concentration was higher in Chungcheong than in Jeolla (p = 0.05). This implies that fermentation was more active with the forages from Chungcheong than from Jeolla. Analysis of gas production profiles showed the rate of fermentation differed among forage species (p<0.05). Conclusion: The results of the present study showed that the nutritional values of some LPF (i.e., corn silage and Italian ryegrass) are comparable to those of imported forages widely used in Korea. This study also indicated that the nutritional value of LPF differs by origin, as well as by forage species. Detailed analyses of nutrient composition and digestion kinetics of LPF should be routinely employed to evaluate the correct nutritional value of LPF and to increase their use in the field.

Effect of Different Silages for TMR on In vitro Rumen Simulative Fermentation

  • Mbiriri, David Tinotenda;Oh, Seong Jin;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • In this study, the in vitro fermentation parameters of whole crop barley (WCBS-TMR) and Italian ryegrass (IRGS-TMR) silage total mixed rations were compared. A rice straw based diet (RSBD), which was a mixture of rice straw and concentrate (60:40), was used as the control. The feeds were incubated in buffered rumen fluid for 3, 6, 9, 12, 24, 48 and 72 hours at $39^{\circ}C$. At the end of each incubation period the following parameters were determined, total gas, pH, ammonia nitrogen ($NH_3$-N), volatile fatty acids (VFA) and then the acetate to propionate ratio (A/P) was calculated. The dietary treatments did not affect (p>0.05) the overall production of $NH_3$-N, gas, total VFA and all the individual VFA, with the exception of n-butyrate (p<0.001). The treatment diets significantly affected the A/P ratio (p<0.01). The control diet resulted in the lowest A/P ratios, followed by WCBS-TMR and lastly IRGS-TMR had the highest ratios. Gas production was not different between treatments, suggesting a probable similar level of digestibility when treatments are fed to animals. It can therefore be concluded from the present study that WCBS and IRGS are of almost an equivalent nutritional value when incubated in a TMR form. WCBS-TMR however resulted in lower A/P ratios than IRGS-TMR, which is indicative of a more energy efficient diet.