• Title/Summary/Keyword: p-channel gate

Search Result 179, Processing Time 0.027 seconds

Electrical Characteristics of Novel LIGBT with p Channel Gate and p+ Ring at Reverse Channel Structure (p+링과 p 채널 게이트를 갖는 역채널 LIGBT의 전기적인 특성)

  • Gang, Lee-Gu;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.99-104
    • /
    • 2002
  • lateral insulated gate bipolar transistors(LIGBTs) are extensively used in high voltage power IC application due to their low forward voltage drops. One of the main disadvantages of the LIGBT is its scow switching speed when compared to the LDMOSFET. And the LIGBT with reverse channel structure is lower current capability than the conventional LIGBT at the forward conduction mode. In this paper, the LIGBT which included p+ ring and p-channel gate is presented at the reverie channel structure. The presented LIGBT structure is proposed to suppress the latch up, efficiently and to improve the turn off time. It is shown to improve the current capability too. It is verified 2-D simulator, MEDICI. It is shown that the latch up current of new LIGBT is 10 times than that of the conventional LIGBT Additionally, it is shown that the turn off characteristics of the proposed LIGBT is i times than that of the conventional LIGBT. It is net presented the tail current of turn off characteristics at the proposed structure. And the presented LIGBT is not n+ buffer layer because it includes p channel gate and p+ ring.

A Study on Electric Characteristics of Silicon Implanted p Channel Polycrystalline Silicon Thin Film Transistors Fabricated on High Temperature (고온에서 제조된 실리콘 주입 p채널 다결정 실리콘 박막 트랜지스터의 전기 특성 변화 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2011
  • Analyzing electrical degradation of polycrystalline silicon transistor to applicable at several environment is very important issue. In this research, after fabricating p channel poly crystalline silicon TFT (thin film transistor) electrical characteristics were compare and analized that changed by gate bias with first measurement. As a result on and off current was reduced by variation of gate bias and especially re duce ratio of off current was reduced by $7.1{\times}10^1$. On/off current ratio, threshold voltage and electron mobility increased. Also, when channel length gets shorter on/off current ratio was increased more and thresh old voltage increased less. It was cause due to electron trap and de-trap to gate silicon oxide by variation of gate bias.

Restoration Characteristics along to Time of the Gate and Substrate Current in p-channel MOSFETS (P-채널 MOSFET에서 게이트와 기판 전류의 시간에 따른 복원 특성)

  • 조상운;장원수;배지철;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1101-1104
    • /
    • 2003
  • In this paper, we analyzed the gate current and substrate current by the hot carrier effects and restoration phenomenon of characteristics by time in the p-channel MOSFETs. The Stress voltage condition is a voltage in maximum gate current and time is 3s, 10s, 30s, l00s, 1000s, 2000s and 3000s. As results of analysis, the gate current and substrate current were decreased by stress time, and the restoration time of characteristics were shown the results that were decreased by the exponential times.

  • PDF

Hot-Carrier Effects of $BF_2$ Ion-Implanted Surface-Channel LDD PMOSFET ($BF_2$ 이온 주입한 표면 채널 LDD PMOSFET의 Hot-Carrier 효과)

  • 양광선;박훈수;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.53-58
    • /
    • 1991
  • Hot-carrier induced degradation has been studied for the BF$_2$ ion-implanted surface-channel LDD(P$^{+}$ polysilicon gate) PMOSFET in comparison to the buried-channel structure(N$^{+}$ polysilicon gate) PMOSFET. The conditions for maximum degradation better correlated to I$_{g}$ than I$_{sub}$ for both PMOSFET's. Due to the use of LDD structure on SC-PMOSFET, the substrate current for SC-PMOSFET was shown to be smaller than that of BC-PMOSFET. The gate current was smaller as well, due to the gate material work-function difference between p$^{+}$ and n$^{+}$ polysilicon gates. From the results, it was shown that the surface-channel LDD PMOSFET is more resistant to short channel effect than the buried-channel PMOSFET.

  • PDF

Gate-Induced-Drain-Leakage (GIDL) Current of MOSFETs with Channel Doping and Width Dependence

  • Choi, Byoung-Seon;Choi, Pyung-Ho;Choi, Byoung-Deog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.344-345
    • /
    • 2012
  • The Gate-Induced-Drain-Leakage (GIDL) current with channel doping and width dependence are characterized. The GIDL currents are found to increase in MOSFETs with higher channel doping levels and the observed GIDL current is generated by the band-to-band-tunneling (BTBT) of electron through the reverse-biased channel-to-drain p-n junction. A BTBT model is used to fit the measured GIDL currents under different channel-doping levels. Good agreement is obtained between the modeled results and experimental data. The increase of the GIDL current at narrower widths in mainly caused by the stronger gate field at the edge of the shallow trench isolation (STI). As channel width decreases, a larger portion of the GIDL current is generated at the channel-isolation edge. Therefore, the stronger gate field at the channel-isolation edge causes the total unit-width GIDL current to increases for narrow-width devices.

  • PDF

Fabrication of p-type FinFETs with a 20 nm Gate Length using Boron Solid Phase Diffusion Process

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the p-type FinFETs with a 20 nm gate length by solid-phase-diffusion (SPD) process was developed. Using the poly-boron-films (PBF) as a novel diffusion source of boron and the rapid thermal annealing (RTA), the p-type sourcedrain extensions of the FinFET devices with a threedimensional structure were doped. The junction properties of boron doped regions were investigated by using the $p^+-n$ junction diodes which showed excellent electrical characteristics. Single channel and multi-channel p-type FinFET devices with a gate length of 20-100 nm was fabricated by boron diffusion process using PBF and revealed superior device scalability.

Study on New LIGBT with Multi Gate for High Speed and Improving Latch up Effect (래치 업 특성의 개선과 고속 스위칭 특성을 위한 다중 게이트 구조의 새로운 LIGBT)

  • 강이구;성만영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.371-375
    • /
    • 2000
  • In this paper a new conductivity modulated power transistor called the Lateral Insulated Gated Bipolar Transistor which included n+ ring and p-channel gate is presented. A new lateral IGBT structure is proposed to suppress latch-up and to improve turn off time by imploying n+ ring and p-channel gate and verified by MEDICI. The simulated I-V characteristics at $V_{G}$=15V show that the latch up occurs at $V_{A}$=18V and 6.9$\times$10$^{-5}$ A/${\mu}{\textrm}{m}$ for the proposed LIGBT while the conventional LIGBT latches at $V_{A}$=1.3V and 1.96${\mu}{\textrm}{m}$10$^{-5A}$${\mu}{\textrm}{m}$. It is shown that turn off characteristic of new LIGBT is 8 times than that of conventional LIGBT. And noble LIGBT is not n+ buffer layer because that It includes p channel gate and n+ ring. Therefore Mask for the buffer layer isn’t needed. The concentration of n+ ring is and the numbers of n+ ring and p channel gate are three for the optimal design.n.n.n.n.

  • PDF

Study on the Improvement of Sub-Micron Channel P-MOSFET ($1{\mu}m$ 이하의 채널 길이를 가지는 P-MOSFET의 특성 개선에 관한 연구)

  • Park, Young-June
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.472-477
    • /
    • 1987
  • In order to prevent the short-channel effects due to threshold voltage adjustment implantation in conventional n+ doped silicon gate process, a new approach involving automatic doping of polycide by boron during source and drain implantation is introduced. P-MOSFET devece fabricated by theis approach shows improved short channel characteristics than conventional device with n+ doped gate. Some concerns of adopting this approach in CMOS technology are addressed togetheer with some suggestions.

  • PDF

Adjusting the Sensitivity of an Active Pixel Sensor Using a Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor-Type Photodetector With a Transfer Gate (전송 게이트가 내장된 Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor 구조 광 검출기를 이용한 감도 가변형 능동 화소 센서)

  • Jang, Juneyoung;Lee, Jewon;Kwen, Hyeunwoo;Seo, Sang-Ho;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.114-118
    • /
    • 2021
  • In this study, the sensitivity of an active pixel sensor (APS) was adjusted by employing a gate/body-tied (GBT) p-channel metal-oxide semiconductor field-effect transistor (PMOSFET)-type photodetector with a transfer gate. A GBT PMOSFET-type photodetector can amplify the photocurrent generated by light. Consequently, APSs that incorporate GBT PMOSFET-type photodetectors are more sensitive than those APSs that are based on p-n junctions. In this study, a transfer gate was added to the conventional GBT PMOSFET-type photodetector. Such a photodetector can adjust the sensitivity of the APS by controlling the amount of charge transmitted from the drain to the floating diffusion node according to the voltage of the transfer gate. The results obtained from conducted simulations and measurements corroborate that, the sensitivity of an APS, which incorporates a GBT PMOSFET-type photodetector with a built-in transfer gate, can be adjusted according to the voltage of the transfer gate. Furthermore, the chip was fabricated by employing the standard 0.35 ㎛ complementary metal-oxide semiconductor (CMOS) technology, and the variable sensitivity of the APS was thereby experimentally verified.

Characteristics of CMOS Transistor using Dual Poly-metal(W/WNx/Poly-Si) Gate Electrode (쌍극 폴리-금속 게이트를 적용한 CMOS 트랜지스터의 특성)

  • 장성근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.233-237
    • /
    • 2002
  • A giga-bit DRAM(dynamic random access memory) technology with W/WNx/poly-Si dual gate electrode is presented in 7his papers. We fabricated $0.16\mu\textrm{m}$ CMOS using this technology and succeeded in suppressing short-channel effects. The saturation current of nMOS and surface-channel pMOS(SC-pMOS) with a $0.16\mu\textrm{m}$ gate was observed 330 $\mu\A/\mu\textrm{m}$ and 100 $\mu\A/\mu\textrm{m}$ respectively. The lower salutation current of SC-pMOS is due to the p-doped poly gate depletion. SC-pMOS shows good DIBL(dram-induced harrier lowering) and sub-threshold characteristics, and there was no boron penetration.