• Title/Summary/Keyword: oxygen carrier material

Search Result 60, Processing Time 0.027 seconds

Improved Stability Sputtered IZO Thin Film Transistor Using Solution Processed Al2O3 Diffusion Layer (Solution-Processed Al2O3 확산층을 이용한 Sputtering IZO Thin Film Transistor의 안정성 향상)

  • Hwang, Namgyung;Lim, Yooseong;Lee, Jeong Seok;Lee, Sehyeong;Yi, Moonsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.273-277
    • /
    • 2018
  • This research introduces the sputtered IZO thin film transistor (TFT) with solution-processed $Al_2O_3$ diffusion layer. IZO is one of the most commonly used amorphous oxide semiconductor (AOS) TFT. However, most AOS TFTs have many defects that degrade performance. Especially oxygen vacancy in the active layer. In previous research, aluminum was used as a carrier suppressor by binding the oxygen vacancy and making a strong bond with oxygen atoms. In this paper, we use a solution-processed $Al_2O_3$ diffusion layer to fabricate stable IZO TFTs. A double-layer solution-processed $Al_2O_3$-sputtered IZO TFT showed better performance and stability, compared to normal sputtered IZO TFT.

Role of Hf in amorphous oxide thin film transistors fabricated by rf-magnetron sputtering (스퍼터링 공정으로 제작된 비정질 산화물 박막트랜지스터의 하프늄 금속이온 영향)

  • Chong, Eu-Gene;Chun, Yoon-Soo;Jo, Kyoung-Chol;Kim, Seung-Han;Jung, Da-Woon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.12-12
    • /
    • 2010
  • Time dependence of the shift of the threshold voltage of amorphous hafnium-indium-zinc oxide (a-HIZO) has been reported under on-current stress condition. a-HIZO thin films were deposited on $SiO_2$/Si (100) by rf magnetron sputtering. XPS measurement indicates that the Hf metal cations in a-HIZO system after annealing process reduce oxygen vacancies by binding oxygen. It was found that the Hf metal cation can be effectively incorporated in the IZO thin films as a suppressor against both the oxygen deficiencies and the carrier generation in the ZnO-based system.

  • PDF

Effects of Rapid Thermal Annealing on the Conduction of a-IGZO Films (급속 열처리가 a-IGZO 박막의 전도에 미치는 영향)

  • Kim, Do-Hoon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • The conduction behavior and electron concentration change in a-IGZO thin-films according to the RTA (rapid thermal annealing) were studied. The electrical characteristics of TFTs (thin-film-transistors) annealed by different temperatures were measured. The sheet resistance, electron concentration, and oxygen vacancy of a-IGZO film were measured by the four-point-probe-measurement, hall-effect-measurement, and XPS analysis. The RTA process increased the driving current of IGZO TFTs but the VTH shifted to the negative direction at the same time. When the RTA temperature is higher than $250^{\circ}C$, the leakage current at off-state increased significantly. This is attributed to the increase of oxygen vacancy resulting in the increase of electron concentration. We demonstrate that the RTA is a promising process to adjust the VTH of TFT because the RTA process can easily modify the electron concentration and control the conductivity of IGZO film with short process time.

Electrical Properties of Tungsten Oxide Interfacial Layer for Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.196.2-196.2
    • /
    • 2015
  • There are various issues fabricating the successful and efficient solar cell structures. One of the most important issues is band alignment technique. The solar cells make the carrier in their active region over the p-n junction. Then, electrons and holes diffuse by minority carrier diffusion length. After they reach the edge of solar cells, there exist large energy barrier unless the good electrode are chosen. Many various conductor with different work functions can be selected to solve this energy barrier problem to efficiently extract carriers. Tungsten oxide has large band gap known as approximately 3.4 eV, and usually this material shows n-type property with reported work function of 6.65 eV. They are extremely high work function and trap level by oxygen vacancy cause them to become the hole extraction layer for optical devices like solar cells. In this study, we deposited tungsten oxide thin films by sputtering technique with various sputtering conditions. Their electrical contact properties were characterized with transmission line model pattern. The structure of tungsten oxide thin films were measured by x-ray diffraction. With x-ray photoelectron spectroscopy, the content of oxygen was investigated, and their defect states were examined by spectroscopic ellipsometry, UV-Vis spectrophotometer, and photoluminescence measurements.

  • PDF

A study on p-type ZnO thin film characterization and the stability from oxygen fraction variation ($O_2$ fraction 변화에 따른 undoped p-type ZnO 특성 및 안정화에 대한 연구)

  • Park, Hyeong-Sik;Jang, Kyung-Soo;Jung, Sung-Wook;Jeong, Han-Uk;Yun, Eui-Jung;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.143-143
    • /
    • 2010
  • In this study, we demonstrate that ZnO deposited onto $SiO_2$ substrates by magnetron sputtering produces p-type ZnO at higher $O_2$ pressure and n-type ZnO at lower $O_2$ pressure. We also report the effect of hydrogen peroxide ($H_2O_2$) on the stability of undoped ZnO thin films. The films were immersed in 30% $H_2O_2$ for 1 min at $30^{\circ}C$ and annealed in $O_2$at $450^{\circ}C$. The carrier concentration, mobility. and conductivity were measured by a Hall effect measurement system. The Hall measurement results for ZnO films untreated with $H_2O_2$ but annealed in $O_2$ indicate that oxygen fraction greater than ~0.5 produces undoped p-type ZnO films, whereas oxygen fraction less than ~0.5 produces undoped n-type ZnO films. This is attributed to the fact that the oxygen vacancies ($V_o$) decrease and the oxygen interstitials ($O_i$) or zinc vacancies ($V_{Zn}$) increase with increasing oxygen atoms incorporated into ZnO films during deposition and $O_2$ post-annealing.

  • PDF

The variation of C-V characteristics of thermal oxide grown on SiC wafer with the electrode formation condition (SiC 열산화막의 Electrode형성조건에 따른 C-V특성 변화)

  • Kang, M.J.;Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.354-357
    • /
    • 2002
  • Thermally grown gate oxide on 4H-SiC wafer was investigated. The oxide layers were grown at l150$^{\circ}C$ varying the carrier gas and post activation annealing conditions. Capacitance-Voltage(C-V) characteristic curves were obtained and compared using various gate electrode such as Al, Ni and poly-Si. The interface trap density can be reduced by using post oxidation annealing process in Ar atmosphere. All of the samples which were not performed a post oxidation annealing process show negative oxide effective charge. The negative oxide effective charges may come from oxygen radical. After the post oxidation annealing, the oxygen radicals fixed and the effective oxide charge become positive. The effective oxide charge is negative even in the annealed sample when we use poly silicon gate. Poly silicon layer was dope by POCl$_3$ process. The oxide layer may be affected by P ions in poly silicon layer due to the high temperature of the POCl$_3$ doping process.

  • PDF

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

A Comparison of Methods to Remove the Boron Rich Layer Formed at Boron Doping Process for c-Si Solar Cell Applications (결정질 실리콘 태양전지의 적용을 위해 보론 확산 공정에서 생성되는 Boron Rich Layer 제거 연구)

  • Choi, Ju Yeon;Cho, Young Joon;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.665-669
    • /
    • 2015
  • We investigated and compared two methods of in-situ oxidation and chemical etching treatment (CET) to remove the boron rich layer (BRL). The BRL is generally formed during boron doping process. It has to be controlled in order not to degrade carrier lifetime and reduce electrical properties. A boron emitter is formed using $BBr_3$ liquid source at $930^{\circ}C$. After that, in-situ oxidation was followed by injecting oxygen of 1,000 sccm into the furnace during ramp down step and compared with CET using a mixture of acid solution for a short time. Then, we analyzed passivation effect by depositing $Al_2O_3$. The results gave a carrier lifetime of $110.9{\mu}s$, an open-circuit voltage ($V_{oc}$) of 635 mV at in-situ oxidation and a carrier lifetime of $188.5{\mu}s$, an $V_{oc}$ of 650 mV at CET. As a result, CET shows better properties than in-situ oxidation because of removing BRL uniformly.

Synthesis of ZnO nanowires and their optical characteristic properties (ZnO 나노와이어의 합성 및 광학적 특성)

  • 박광수;이종수;강명일;김항성;성만영;김상식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.43-49
    • /
    • 2002
  • Gray-colored materials were synthesized from ball-milled ZnO powders under a thermal annealing at 1380$^{\circ}C$ with an argon carrier gas for 3 hours. The synthesized materials were identified to be wurtzitic hexagonal structured ZnO nanowires by X-ray diffraction and scanning electron microscopy. The ZnO nanowires have the long cylinder-like shape of which cross-section is a circle, and these nanowires are in the range 15∼40 nm width and 10-70 $\mu\textrm{m}$ length, respectively. Transmission electron microscopy revealed that these nanowires are single-crystalline and grow along [110] direction. The optical properties of the ZnO nanowires were investigated with photoluminescence. The analytic results revealed that ZnO nanowires have the singly ionized oxygen vacancies in the surface lattices, as they emit strong green light in room temperature PL. In addition, the growth mechanism of the ZnO nanowires can be described by the vapor-solid procedures.

  • PDF

Synthesis of ZnO Nanowires and their Characteristic Properties (ZnO 나노와이어의 합성 및 특성)

  • 박광수;이종수;강명일;성만영;김상식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.651-657
    • /
    • 2002
  • Gray-colored materials were synthesized from ball-milled ZnO powders under a thermal annealing at $1380^{\circ}C$ with an argon carrier gas for 3 hours. The synthesized materials were identified to be wurtzitic hexagonal structured ZnO nanowires by X-ray diffraction and scanning electron microscopy. The ZnO nanowires have the long cylinder-like shape of which cross-section is a circle, and these nanowires are in the range 15~40nm width and 10~70 $\mu m$ length, respectively. Transmission electron microscopy revealed that these nanowires are single-crystalline and grow along [110] direction. The optical properties of the ZnO nanowires were investigated with photoluminescence. The analytic results revealed that ZnO nanowires have the singly ionized oxygen vacancies in the surface lattices, as they emit strong green light in room temperature PL. In addition, the growth mechanism of the ZnO nanowires can be described by the vapor-solid procedures.