References
- Phys. Rev. Lett. v.68 New one-dimensional conductors: graphitic microtubules N. Hamada;S. Sawada;A. Oshiyama https://doi.org/10.1103/PhysRevLett.68.1579
- J. of KIEEME v.14 no.9 Growth of carbon nanotubes depending on etching condition of Ni-catalytic layer S.H. Jeong;G.E. Jang;H.J. Ryu
- Science v.279 A laser ablation method for the synthesis of crystalline semiconductor nanowires A.M. Morales;C.M. Lieber https://doi.org/10.1126/science.279.5348.208
- Science v.277 Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction W. Han;S. Fan;Q. Li;Y. Hu https://doi.org/10.1126/science.277.5330.1287
- J. Cryst. Growth v.213 Formation of GaN nanorods by a sublimation method J. Y. Li;X.L. Chen;Z. Y. Qiao;Y. G. Cao;Y.C. Lan https://doi.org/10.1016/S0022-0248(00)00390-0
- J. Mater. Res v.12 no.11 Nanostructured high-temperature superconductors: creation of strong-pining columnar defects in nanorod/ superconductor composites P. Yang;C.M. Lieber https://doi.org/10.1557/JMR.1997.0393
- Science v.291 Nanobelts of semiconducting oxides Z.W. Pan;Z.R. Dai;Z. L. Wang https://doi.org/10.1126/science.1058120
- Adv. Mater. v.13 Catalytic growth of zinc oxide nanowires by vapor transport M.H. Huang;Y. Wu;H. Feick;N. Tran;E. Weber;P. Yang https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
- Solid State Commun v.109 Ga₂O₃nanowires prepared by physical evaporation H.Z. Zhang;Y.C. Kong;Y.Z. Wang;X. Du;Z.G. Bai;J.J. Wang;D.P. Yu;Y. Ding;Q.L. Hang;S.Q. Feng https://doi.org/10.1016/S0038-1098(99)00015-0
- Solid State Commun v.118 Ultra-long single crystalline nanoribbons of tin oxide Z.R. Dai;Z.W. Pan;Z.L. Wang https://doi.org/10.1016/S0038-1098(01)00122-3
- Proc. 2001 Summer Conf. KIEEME Mass production of carbon nanotubes using Vapor Phase Growth S.C. Lyu;T.J. Lee;C.J. Lee
- Appl. Phys. Lett. v.80 no.3 β-Ga₂O₃ nano-wires synthesized from milled GaN pow-ders B.C. Kim;K.T. Sun;K.S. Park;K.J. Im;T. Noh;M.Y. Sung;S. Nahm;Y. N. Choi;S.S. Park;S. Kim https://doi.org/10.1063/1.1435073
- Science v.276 Will UV lasers beat the blues? R.F. Service https://doi.org/10.1126/science.276.5314.895
- J. of KIEEME v.14 no.12 Synthesis of β-Ga₂O₃nanobelt and nanopartivles from mechanically ground GaN powders with different thermal annealing atmospheres B.C. Kim;K.T. Sun;K.S. Park;K.J. Im;T.Y. Noh;S. Nahm;M.Y. Sung;S. Kim
- Progress in Mater. Sci. v.46 Mechanical alloying and milling C. Suryanarayana https://doi.org/10.1016/S0079-6425(99)00010-9
- Appl. Phys. Lett. v.72 no.25 Room-temperature ultraviolet laser emission from self-assembled ZnO micro-crystallite thin films Z.K. Tang;G. K. L. Wong;P. Yu;M. Kawasaki;A. Ohtomo;H. Koinuma;Y. Segawa https://doi.org/10.1063/1.121620
- Appl. Phys. Lett. v.78 no.4 Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach Y.C. Kong;D.P. Yu;B. Zhang;W. Fang;S. Q. Feng https://doi.org/10.1063/1.1342202
- J. Appl. Phys. v.79 no.10 Mechanisms behind green photoluminescence in ZnO phosphor powders K. Vanheusden;W. L .Warren;C.H. Seager;D.R. Tallant;J. A. Voigt;B. E. Gnade https://doi.org/10.1063/1.362349
- Phys. Rev. B. v.38 no.14 Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electron states by high-resolution magnetooptics and excitation spectroscopy J. Gutowski;N. Presser;I. Broser https://doi.org/10.1103/PhysRevB.38.9746
- J. Appl. Phys. v.84 no.7 Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization Y. Chen;D. M. Bagnall;H. Koh;K. Park;K. Hiraga;Z. Zhu;T. Yao https://doi.org/10.1063/1.368595
- J. Phys. D: Appl. Phys. v.34 Resonant raman scsttering and photo-luminescence from high-quality nanao-crystalline ZnO thin films prepared by thermal oxidation of ZnS thin films X.T. Zhang;Y. C. Liu;Z. Z. Zhi;J. Y. Zhang;Y. M. Lu;D. Z. Shen;W. Xu; G. Z. Zhong;X. W. Fan;X. G. Kong https://doi.org/10.1088/0022-3727/34/24/302
- J. Cryst. Growth. v.184/185 Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE D. M. Bagnall;Y.F. Chen;M. Y. Shen;Z. Zhu;T. Goto;T. Yao https://doi.org/10.1016/S0022-0248(98)80127-9
- J. Mater. Science v.35 Morphologies and growth mechanisms of aluminum nitride whiskers by SHS method-Part Ⅰ,Ⅱ G. Jiang;H. Zhuang;J. Zhang;M. Ruan;W. Li;F. Wu;B. Zhang https://doi.org/10.1023/A:1004780213488