DOI QR코드

DOI QR Code

Improved Stability Sputtered IZO Thin Film Transistor Using Solution Processed Al2O3 Diffusion Layer

Solution-Processed Al2O3 확산층을 이용한 Sputtering IZO Thin Film Transistor의 안정성 향상

  • Hwang, Namgyung (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lim, Yooseong (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Jeong Seok (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Sehyeong (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Yi, Moonsuk (Department of Electrical and Computer Engineering, Pusan National University)
  • 황남경 (부산대학교 전기전자컴퓨터공학과) ;
  • 임유성 (부산대학교 전기전자컴퓨터공학과) ;
  • 이정석 (부산대학교 전기전자컴퓨터공학과) ;
  • 이세형 (부산대학교 전기전자컴퓨터공학과) ;
  • 이문석 (부산대학교 전기전자컴퓨터공학과)
  • Received : 2018.02.06
  • Accepted : 2018.03.12
  • Published : 2018.07.01

Abstract

This research introduces the sputtered IZO thin film transistor (TFT) with solution-processed $Al_2O_3$ diffusion layer. IZO is one of the most commonly used amorphous oxide semiconductor (AOS) TFT. However, most AOS TFTs have many defects that degrade performance. Especially oxygen vacancy in the active layer. In previous research, aluminum was used as a carrier suppressor by binding the oxygen vacancy and making a strong bond with oxygen atoms. In this paper, we use a solution-processed $Al_2O_3$ diffusion layer to fabricate stable IZO TFTs. A double-layer solution-processed $Al_2O_3$-sputtered IZO TFT showed better performance and stability, compared to normal sputtered IZO TFT.

Keywords

References

  1. M. J. Powell, IEEE Trans. Electron Devices, 36, 2753 (1989). [DOI: https://doi.org/10.1109/16.40933]
  2. C. Park, Y. Lim, S. Ha, Y. Im, M. Jang, S. I. Choi, J. I. Park, and M. Yi, J. Soc. Inf. Disp., 23, 371 (2015). [DOI: https://doi.org/10.1002/jsid.321]
  3. E. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett., 96, 152102 (2010). [DOI: https://doi.org/10.1063/1.3387819]
  4. B. D. Ahn, H. S. Shin, H. J. Kim, J. S. Park, and J. K. Jeong, Appl. Phys. Lett., 93, 203506 (2008). [DOI: https:// doi.org/10.1063/1.3028340]
  5. A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett., 94, 133502 (2009). [DOI: https://doi.org/10.1063/1.3112566]
  6. C. Avis and J. Jang, J. Mater. Chem., 21, 10649 (2011). [DOI: https://doi.org/10.1039/c1jm12227d]
  7. M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang Jr, J. Cryst. Growth, 220, 254 (2000). [DOI: https://doi.org/10.1016/ S0022-0248(00)00834-4]
  8. J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, Thin Solid Films, 520, 1679 (2012). [DOI: https://doi.org/10.1016/ j.tsf.2011.07.018]
  9. J. Li, F. Zhou, H. P. Lin, W. Q. Zhu, J. H. Zhang, X. Y. Jiang, and Z. L. Zhang, Vacuum, 86, 1840 (2012). [DOI: https://doi.org/10.1016/j.vacuum.2012.04.009]
  10. W. Lim, E. A. Douglas, D. P. Norton, S. J. Pearton, F. Ren, Y. W. Heo, S. Y. Son, and J. H. Yuh, J. Vac. Sci. Technol., B, 28, 116 (2010). [DOI: https://doi.org/10.1116/1.3276774]