• 제목/요약/키워드: oxide trap

검색결과 253건 처리시간 0.03초

Effects of Interfacial Dielectric Layers on the Electrical Performance of Top-Gate In-Ga-Zn-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Lee, Jeong-Min;Lee, Jong-Ho;KoPark, Sang-Hee;Yoon, Sung-Min;Byun, Chun-Won;Yang, Shin-Hyuk;Chung, Sung-Mook;Cho, Kyoung-Ik;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.660-666
    • /
    • 2009
  • We investigate the effects of interfacial dielectric layers (IDLs) on the electrical properties of top-gate In-Ga-Zn-oxide (IGZO) thin film transistors (TFTs) fabricated at low temperatures below $200^{\circ}C$, using a target composition of In:Ga:Zn = 2:1:2 (atomic ratio). Using four types of TFT structures combined with such dielectric materials as $Si_3N_4$ and $Al_2O_3$, the electrical properties are analyzed. After post-annealing at $200^{\circ}C$ for 1 hour in an $O_2$ ambient, the sub-threshold swing is improved in all TFT types, which indicates a reduction of the interfacial trap sites. During negative-bias stress tests on TFTs with a $Si_3N_4$ IDL, the degradation sources are closely related to unstable bond states, such as Si-based broken bonds and hydrogen-based bonds. From constant-current stress tests of $I_d$ = 3 ${\mu}A$, an IGZO-TFT with heat-treated $Si_3N_4$ IDL shows a good stability performance, which is attributed to the compensation effect of the original charge-injection and electron-trapping behavior.

Effect of Nitrogen, Titanium, and Yttrium Doping on High-K Materials as Charge Storage Layer

  • Cui, Ziyang;Xin, Dongxu;Park, Jinsu;Kim, Jaemin;Agrawal, Khushabu;Cho, Eun-Chel;Yi, Junsin
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.445-449
    • /
    • 2020
  • Non-volatile memory is approaching its fundamental limits with the Si3N4 storage layer, necessitating the use of alternative materials to achieve a higher programming/erasing speed, larger storage window, and better data retention at lower operating voltage. This limitation has restricted the development of the charge-trap memory, but can be addressed by using high-k dielectrics. The paper reviews the doping of nitrogen, titanium, and yttrium on high-k dielectrics as a storage layer by comparing MONOS devices with different storage layers. The results show that nitrogen doping increases the storage window of the Gd2O3 storage layer and improves its charge retention. Titanium doping can increase the charge capture rate of HfO2 storage layer. Yttrium doping increases the storage window of the BaTiO3 storage layer and improves its fatigue characteristics. Parameters such as the dielectric constant, leakage current, and speed of the memory device can be controlled by maintaining a suitable amount of external impurities in the device.

($Eu^{2+}$, $Nd^{3+}$를 도핑시킨 $BaAl_{2}O_{4}$ 형광체의 광학 및 장잔광특성 (Optical and Long After-Glow Characteristics of $Eu^{2+}$, $Nd^{3+}$ doped $BaAl_{2}O_{4}$ Phosphorescent Crystals)

  • 김정환;김병규;이동규
    • 한국응용과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.174-180
    • /
    • 2002
  • In recent days, the study of a new phosphorescent phosphor has been performed in order to overcome the defect of sulfide phosphor and increase the brightness and long after-glow characteristic of phosphorescent phosphor. Particularly, sulfide phosphor usually used is so chemically unstable that the study of oxide phosphors are processing. $Eu^{2+}$, $Nd^{3+}$ doped Ba-Al-O phosphors sintered at $600{\sim}1500^{\circ}C$ for 2hours had the PL emission spectrum and after-glow over $1200^{\circ}C$. In this system, as the mole concentration of alumina increases, emission bands of phosphors moved from 500nm to 380nm. The optimum concentration of flux was 5wt% and after-glow characteristics of phosphors were found at the host material molar ratio ($BaCO_{3}:Al_{2}O_{3}$), 1:1 and 1:3.

자연 산화막과 엑시머 레이저를 이용한 Poly-Si/a-Si 이중 박막 다결정 실리콘 박막 트랜지스터 (Poly-Si Thin Film Transistor with poly-Si/a-Si Double Active Layer Fabricated by Employing Native Oxide and Excimer Laser Annealing)

  • 박기찬;박진우;정상훈;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권1호
    • /
    • pp.24-29
    • /
    • 2000
  • We propose a simple method to control the crystallization depth of amorphous silicon (a-Si) deposited by PECVD or LPCVD during the excimer laser annealing (ELA). Employing the new method, we have formed poly-Si/a-Si double film and fabricated a new poly-Si TFT with vertical a-Si offsets between the poly-Si channel and the source/drain of TFT without any additional photo-lithography process. The maximum leakage current of the new poly-Si TFT decreased about 80% due to the highly resistive vertical a-Si offsets which reduce the peak electric field in drain depletion region and suppress electron-hole pair generation. In ON state, current flows spreading down through broad a-Si cross-section in the vertical a-Si offsets and the current density in the drain depletion region where large electric field is applied is reduced. The stability of poly-Si TFT has been improved noticeably by suppressing trap state generation in drain region which is caused by high current density and large electric field. For example, ON current of the new TFT decreased only 7% at a stress condition where ON current of conventional TFT decreased 89%.

  • PDF

박막트랜지스터 게이트 절연막 응용을 위한 불화막 특성연구 (The Study of Fluoride Film Properties for TFT gate insulator application)

  • 김도영;최석원;이준신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.737-739
    • /
    • 1998
  • Gate insulators using various fluoride films were investigated for thin film transistor applications. Conventional oxide containing materials exhibited high interface states, high $D_{it}$ gives an increased threshold voltage and poor stability of TFT. To improve TFT performances, we must reduce interface trap charge density between Si and gate insulator. In this paper, we investigated gate insulators such as such as $CaF_2$, $SrF_2$, $MgF_2$ and $BaF_2$. These materials exhibited an improvement in lattice mismatch, difference in thermal expansion coefficient, and electrical stability MIM and MIS devices were employed for an electrical characterization and structural property examination. Among the various fluoride materials, $CaF_2$ film showed an excellent lattice mismatch of 0.737%, breakdown electric field higher than 1.7MV/cm and leakage current density of $10^{-6}A/cm^2$. This paper probes a possibility of new gate insulator material for TFT application.

  • PDF

플레티늄-실리사이드를 이용한 쇼트키 장벽 다결정 박막 트랜지스터트랜지스터 (Schottky barrier polycrystalline silicon thin film transistor by using platinum-silicided source and drain)

  • 신진욱;최철종;정홍배;정종완;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.80-81
    • /
    • 2008
  • Schottky barrier thin film transistors (SB-TFT) on polycrystalline silicon(poly-Si) are fabricated by platinum silicided source/drain for p-type SB-TFT. High quality poly-Si film were obtained by crystallizing the amorphous Si film with excimer laser annealing (ELA) or solid phase crystallization (SPC) method. The fabricated poly-Si SB-TFTs showed low leakage current level and a large on/off current ratio larger than $10^5$. Significant improvement of electrical characteristics were obtained by the additional forming gas annealing in 2% $H_2/N_2$ ambient, which is attributed to the termination of dangling bond at the poly-Si grain boundaries as well as the reduction of interface trap states at gate oxide/poly-Si channel.

  • PDF

다결정 실리콘 TFT에 대한 수소처리 영향 (Hydroquenation Effects on the Poly-Si TFT)

  • 하형찬;이상규;고철기
    • 전자공학회논문지A
    • /
    • 제30A권1호
    • /
    • pp.23-30
    • /
    • 1993
  • Hydrogenation on the top gate and bottom gate Poly-Si TET's was performed by using Nh$_{3}$ plasma and annealing SiN film deposited by PECVD and then the electric characteristics on Poly-Si TET were investigated. As the time of NA$_{3}$ plasma treatment increaes, on/off current ratio gradually increases and the swing value decreases. The trap densities of graim boundaries in Poly-Si decrease very much during the inital 20min of hydrogenation time, and the decreasing scale becomes smaller after 20 min. The electric characteristics of the top gate TFT are better than those of the bottom gate TFT, it is considered due to the defects at the interface between the Poly-Si and the underlayer, SiO$_{2}$. After NH$_{3}$ plasma was treated for 2 hours for the top gate TFT, as the aging time atroon temperature increases on current was not scacely changed and off current decreases more than 1 order. Gate current density recovers to original value after the aging treatment for 8 days and then the electric characteristics are finally improved. It is suggested that the degraded characteristics of gate oxide are improved, from the variations of C-V characteristics with aging time. For the hydrogenation of isothermal and isochronal annealing SiN film deposited by PECVD, the characteristics of Poly-Si TFT are improved with increasing annealing temperature and are not largely changed with increasing annealing time. This results is good in agreement with the hydrogen reduction in Sin film as variations of annealing temperature and time.

  • PDF

Schottky Barrier MOSFETs with High Current Drivability for Nano-regime Applications

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Choi, Chel-Jong;Kim, Tae-Youb;Park, Byoung-Chul;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권1호
    • /
    • pp.10-15
    • /
    • 2006
  • Various sizes of erbium/platinum silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from $20{\mu}m$ to 10nm. The manufactured SB-MOSFETs show excellent DIBL and subthreshold swing characteristics due to the existence of Schottky barrier between source and channel. It is found that the minimization of trap density between silicide and silicon interface and the reduction of the underlap resistance are the key factors for the improvement of short channel characteristics. The manufactured 10 nm n-type SBMOSFET showed $550{\mu}A/um$ saturation current at $V_{GS}-V_T$ = $V_{DS}$ = 2V condition ($T_{ox}$ = 5nm) with excellent short channel characteristics, which is the highest current level compared with reported data.

SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성 (Programming Characteristics of the multi-bit devices based on SONOS structure)

  • 안호명;김주연;서광열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.80-83
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by $0.35\;{\mu}m$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the two-bits per cell operation, charges must be locally trapped in the nitride layer above the channel near the junction. Channel hot electron (CHE) injection for programming can operate in multi-bit using localized trap in nitride film. CHE injection in our devices is achieved with the single power supply of 5 V. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve were investigated. The multi-bit operation which stores two-bit per cell is investigated with a reverse read scheme. Also, hot hole injection for fast erasing is used. Due to the ultra-thin gate dielectrics, our results show many advantages which are simpler process, better scalability and lower programming voltage compared to any other two-bit storage flash memory. This fabricated structure and programming characteristics are shown to be the most promising for the multi-bit flash memory.

  • PDF

온도 Stress에 따른 High-k Gate Dielectric의 특성 연구

  • 이경수;한창훈;최병덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2012
  • 현재 MOS 소자에 사용되고 있는 $SiO_2$ 산화막은 그 두께가 얇아짐에 따라 Gate Leakage current와 여러 가지 신뢰성 문제가 대두되고 있고, 이를 극복하고자 High-k물질을 사용하여 기존에 발생했던 Gate Leakage current와 신뢰성 문제를 해결하고자 하고 있다. 본 실험에서는 High-k(hafnium) Gate Material에 온도 변화를 주었을 때 여러 가지 전기적인 특성 변화를 보는 방향으로 연구를 진행하였다. 기본적인 P-Type Si기판을 가지고, 그 위에 있는 자연적으로 형성된 산화막을 제거한 후 Hafnium Gate Oxide를 Atomic Layer Deposition (ALD)를 이용하여 증착하고, Aluminium을 전극으로 하는 MOS-Cap 구조를 제작한 후 FGA 공정을 진행하였다. 마지막으로 $300^{\circ}C$, $450^{\circ}C$로 30분정도씩 Annealing을 하여, 온도 조건이 다른 3가지 종류의 샘플을 준비하였다. 3가지 샘플에 대해서 각각 I-V (Gate Leakage Current), C-V (Mobile Charge), Interface State Density를 분석하였다. 그 결과 Annealing 온도가 올라가면 Leakage Current와 Dit(Interface State Density)는 감소하고, Mobile Charge가 증가하는 것을 확인할 수가 있었다. 본 연구는 향후 High-k 물질에 대한 공정 과정에서의 다양한 열처리에 따른 전기적 특성의 변화 대한 정보를 제시하여, 향후 공정 과정의 열처리에 대한 방향을 잡는데 도움이 될 것이라 판단된다.

  • PDF