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Abstract—V arious sizes of erbinum/platinum silicided
n/p-type Schottky barrier metal-oxide-semiconductor
field effect (SB-MOSFETs) are
manufactured from 20pm to 10nm. The manu-
factured SB-MOSFETs show excellent DIBL and
subthreshold due to the
existence of Schottky barrier between source and

transistors

swing characteristics

channel. It is found that the minimization of trap
density between silicide and silicon interface and the
reduction of the underlap resistance are the key
factors for the improvement of short channel
characteristics. The manufactured 10 nm n-type SB-
MOSFET showed 550pA/um saturation current at
Ves-Vr = Vps =2V condition (T,; =35nm) with excellent
short channel characteristics, which is the highest
current level compared with reported data.

Index Terms—SB-MOSFETs, scaling, nanotechnology,
high performance

1. INTRODUCTION

Recently, silicide metallic junction-based electronic
devices are being studied for the applications in nanometer
regime as an alternative of conventional metal-oxide-
semiconductor field-effect transistors (MOSFETs) [1-3]. In
Schottky barrier MOSFETs (SB-MOSFETs), the source
and drain are composed of silicide instead of impurity
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doped silicon. Thus, the parasitic source and drain
resistance can be efficiently reduced and the process
temperature can be reduced dramatically (lower than
600 TC), giving the opportunity to use metal as gate
electrode and high-K dielectric materials as gate insulator
[1]. In SB-MOSFETs, most of the works are done in p-
type transistors, using platinum-silicide because of its low
Schottky barrier height (0.24 eV) for hole [2]. Recently,
erbium-silicide is being considered as the candidate for the
n-type SB-MOSFETs [2, 3]. The previous works reported
the superior scaling characteristics of SB-MOSFETs in
deep nano regime. However, the major drawback was the
low current drivability in n-type SB-MOSFETs due to the
high Schottky barrier height. The reported maximum
saturation current was around 200 pA/um, which is too
low compared with conventional MOSFETs [2, 3].

In this paper, various sizes of SB-MOSFETs are
manufactured down to 10nm with 550pA/um saturation
current at Vgs-Vr= Vpg= 2 V condition (T,x = 5 nm).
Also, the short channel characteristics of SB-MOSFETs
are analyzed using DIBL and SS characteristics to check
the scalability.

II. EXPERIMENTAL

As a starting material, (100) #-type and p-type silicon-
on-insulator (SOI) wafers are used for the n-type and p-
type SB-MOSFETs,
phosphorus and boron doped with a resistivity of 13.5-
22.5 Q-cm. The thickness of the SOI and buried oxide
(BOX) layer is 100 nm and 200 nm, respectively. The
gate oxide is 5 nm thick SiO,, grown by thermal

respectively. SOI wafers are

oxidation and the gate electrode is highly phosphorus
doped n-type polycrystalline silicon. Electron-beam
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lithography is employed to define gate pattern. After gate
etching, 30nm thick gate sidewall spacer is formed by
using thermal oxidation method. After blanket dry
etching of gate sidewall spacer the remained spacer
thickness is around 15 nm. After sidewall etching, 100
nm thick erbium and platinum are sputtered for n-type
and p-type SB-MOSFETs, respectively. Erbium-silicide
and platinum-silicide are formed by using rapid thermal
annealing (RTA) technique. Annealing temperature and
time is 500 C and 5 min, respectively. The non-reacted
erbium and platinum are removed by using SPM and
aqua regia for 10 min, respectively. The detailed SB-
MOSFETs manufacturing procedures are summarized in
Table 1. The formation of ErSi,; and PtSi phase are
confirmed by x-ray diffraction (XRD) and Auger
spectroscopy (AES) analysis. The
resistance are less than 30 Q/c and 10 Q/o for erbium-

electron sheet
silicide and platinum-silicide, respectively, even if the
line width is less than 100 nm. Thus, erbium and
platinum are applicable in sub-100 nm regime SB-
MOSFETs manufacturing.

Table 1. Fabrication procedure of SB-MOSFETs
Fabrication procedure

Cleaning of (100) SOI wafer (Ngyp= 10° em™ for n/p-
type substrate)

2 |Active lithography (e-beam) and dry etching

PR strip, gate oxidation (Tox= 5 nm) and n" polysilicon
deposition.

4 |Gate lithography (e-beam), dry etching and PR strip

Sidewall spacer oxidation (Tgp= 15 nm) and blanket
etching

6 |Erbium/Platinum deposition

Annealing (500°C, 10 min) and removal of erbium/
platinum

ITI. RESULTS AND DISCUSSIONS

Erbium and platinum are chosen as source/drain metal
of n/p-type SB-MOSFETs, because of its low Schottky
barrier height for electrons and holes, respectively.
Figure 1 shows the scanning electron microscopy (SEM)
and transmission electron microscopy (TEM) of finally
manufactured 10 nm-gate-length n-type SB-MOSFET.
The uniform growth of ErSi;; on the 20 nm width active

region is shown in the SEM image. Also, from the TEM
image, the gate length is 10 nm with the 15nm thick SiO,
sidewall spacer. Figure 2 shows the diode characteristics
of ErSij; on p-substrate and PtSi on n-substrate,
respectively. N, annealing was a very efficient method to
remove the interface trap existing between silicide and
silicon, thus improving diode I-V characteristics [4].
After N, annealing, Schottky barrier height of ErSi; ; for
hole is 0.77¢V and PtSi for electron is 0.87¢V which
corresponds to 0.36eV for electron and 0.25eV for hole,
respectively. Figure 3 shows Ips-Vgs and Ips-Vpg
characteristics of the 20 um long channel n/p-type SB-
MOSFETs. The gate oxide and spacer thickness is 5 nm
and 15 nm, respectively. Both the n/p-type SB-MOSFETs
show high on/off current ratio, larger than I,,/L¢>10° with
low leakage current (I.xg<100 pA/um). The on/off ratio
and the leakage current level is the highest and lowest
values compared with previously published data in SB-
MOSFETs [2]. Also, DIBL 1s almost suppressed in both
n/p-type SB-MOSFETs and the SS value is 60 mV/decade
both in n-type & p-type SB-MOSFETs, reaching the
theoretical limit vsalue in MOSFETs.
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Fig. 1. SEM and TEM (inset) image of the 10 nm erbium-
silicided n-type SB-MOSFET
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Fig. 3. Ips-Vgs (a) and Ips-Vpg (b) characteristics of 20¢m long
channel n/p-type SB-MOSFET.
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Fig. 4. Ips-Vgs (a) and Ipg-Vpg (b) characteristics of 100 nm
gate length n/p-type SB-MOSFET.

Figure 4 shows the Ipg-Vgs and Ips-Vpg characteristics
of 100 nm gate length »n/p-type SB-MOSFETSs. Also, this
100nm gate length »-type SB-MOSFET shows excellent
short channel characteristics. The measured SS and
DIBL values are 70mV/decade and 30mV, respectively.
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Fig. 5. Ips-Vgs (a) and Ipg-Vpg (b) characteristics of 10 nm #-
type SB-MOSFET.

Figure 5 shows the Ipg-Vgs characteristics of 10 nm
gate length n-type SB-MOSFETs manufactured on »-
type substrate. Although the substrate doping concen-
tration is 10"°cm™, short channel effect is sufficiently
suppressed due to the existence of Schottky barrier
between source and channel. The saturation current
measured at Vgg-V=Vps=2V is 550 pA/um (T = 5 nm).
This is the highest saturation current value compared
with the reported data. The major reason for the increase
of saturation current is due to the reduction of underlap
resistance by changing substrate type from p to n-type.
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Fig. 6. Variation of saturation current with gate length.

Figure 6 shows the variation of saturation current with
the gate length in n-type SB-MOSFETs. As the gate
length decreases, saturation current increases. But the
saturation current is clamped around 250 pA/um if the
used substrate is p-type (open circle). By changing the
substrate type from p to n, the saturation current
gradually increases up to 550pA/um (closed circle). The
major reason for the increase of saturation current is the
reduction of parasitic underlap resistance.
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Fig. 7. Subthreshold swing (SS) characteristics. Scaling theory
is applied for the evaluation of SS.

Figure 7 shows the SS characteristics of SB-MOSFETs
with the variation of gate length. In Figure 7, dotted line
represents theoretical DIBL characteristics of DG-
MOSFETs. The scaling theory of DG-MOSFETS can be
found in [5]. In the calculations of SS in DG-MOSFETs,
gate oxide and fin thickness are assumed as 1 nm and 10
nm, respectively. Note that these assumed values
correspond to the ultimate minimum values in device
technology. The SS characteristics of SB-MOSFETSs are

better than the ultimate limit characteristics of DG-
MOSFETS. The reason for this is due to the existence of
the Schottky barrier between source and channel. In
MOSFETs and DG-MOSFETs, the subthreshold
characteristics, including DIBL and SS, are mainly
determined by the built-in potential. In short channel
device, as the drain voltage increases, built-in potential
between source and channel decreases, giving DIBL
effect. But in SB-MOSFETs, the subthreshold
characteristics are mainly determined by the Schottky
barrier.

IV. CONCLUSIONS

In conclusion, various sizes of erbium/platinum
silicided n/p-type SB-MOSFETs are manufactured from
20 pm to 10 nm. The manufactured SB-MOSFETs show
excellent DIBL and subthreshold swing characteristics
due to the existence of Schottky barrier between source
and channel. It is found that the minimization of trap
density between silicide and silicon interface and the
reduction of the underlap resistance are the key factors
for the improvement of short channel characteristics. The
manufactured 10 nm »-type SB-MOSFET showed 550
HA/um saturation current at Vgg—Vt = Vpg = 2V
condition (T, = Snm) with excellent short channel
characteristics, which is the highest current level
compared with reported data.

In SB-MOSFETsS, SS characteristics of SB-MOSFETSs
are better than the ultimately scaled DG-MOSFETs,
which show the possible application of SB-MOSFETs in
nanoscale regime as an alternative to the MOSFETs.
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