• Title/Summary/Keyword: oxide semiconductors

Search Result 190, Processing Time 0.023 seconds

A Study on an Oxygen Vacancy and Conductivity of Oxide Thin Films Deposited by RF Magnetron Sputtering and Annealed in a Vacuum

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2017
  • Usually, the oxygen vacancy is an important factor in an oxide semiconductor device because the conductivity is related to the oxygen vacancy, which is formed at the interface between oxide semiconductors and electrodes with an annealing processes. ZTO is made by mixing n-type ZnO and p-type $SnO_2$. Zink tin oxide (ZTO), zink oxide (ZnO) and tin oxide ($SnO_2$) thin films deposited by RF magnetron sputtering and annealed, to generate the oxygen vacancy, were analyzed by XPS spectra. The contents of oxygen vacancy were the highest in ZTO annealed at $150^{\circ}C$, ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The current was also increased with increasing the oxygen vacancy ions. The highest content of ZTO oxygen vacancies was obtained when annealed at 150. This is the middle level in compared with those of ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The electrical properties of ZTO followed those of $SnO_2$, which acts a an enhancer in the oxide semiconductor.

Photoactivated Metal Oxide-based Chemiresistors: Revolutionizing Gas Sensing with Ultraviolet Illumination

  • Sunwoo Lee;Gye Hyeon Lee;Myungwoo Choi;Gana Park;Dakyung Kim;Sangbin Lee;Jeong-O Lee;Donghwi Cho
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.274-287
    • /
    • 2024
  • Chemiresistors play a crucial role in numerous research fields, including environmental monitoring, healthcare, and industrial safety, owing to their ability to detect and quantify gases with high sensitivity and specificity. This review provides a comprehensive overview of the recent advancements in photoactivated chemiresistors and emphasizes their potential for the development of highly sensitive, selective, and low-power gas sensors. This study explores a range of structural configurations of sensing materials, from zero-dimensional quantum dots to three-dimensional, porous nanostructures and examines the impact of these designs on the photoactivity, gas interactions, and overall sensor performance-including gas responses and recovery rates. Particular focus is placed on metal-oxide semiconductors and the integration of ultraviolet micro-light emitting diodes, which have gained attention as key components for next-generation sensing technologies owing to their superior photoactivity and energy efficiency. By addressing existing technical challenges, such as limited sensitivity, particularly at room temperature (~22℃), this paper outlines future research directions, highlighting the potential of photoactivated chemiresistors in developing high-performance, ultralow-power gas sensors for the Internet of Things and other advanced applications.

Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review

  • Raja, Jayapal;Jang, Kyungsoo;Nguyen, Cam Phu Thi;Yi, Junsin;Balaji, Nagarajan;Hussain, Shahzada Qamar;Chatterjee, Somenath
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.234-240
    • /
    • 2015
  • Amorphous oxide-based thin-film transistors (TFTs) have drawn a lot of attention recently for the next-generation high-resolution display industry. The required field-effect mobility of oxide-based TFTs has been increasing rapidly to meet the demands of the high-resolution, large panel size and 3D displays in the market. In this regard, the current status and major trends in the high mobility oxide-based TFTs are briefly reviewed. The various approaches, including the use of semiconductor, dielectric, electrode materials and the corresponding device structures for realizing high mobility oxide-based TFT devices are discussed.

Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.441-446
    • /
    • 2020
  • Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/㎠ and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.

Cu2O Thin Film Photoelectrode Embedded with CuO Nanorods for Photoelectrochemical Water Oxidation

  • Kim, Soyoung;Kim, Hyojin
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • Assembling heterostructures by combining dissimilar oxide semiconductors is a promising approach to enhance charge separation and transfer in photoelectrochemical (PEC) water splitting. In this work, the CuO nanorods array/$Cu_2O$ thin film bilayered heterostructure was successfully fabricated by a facile method that involved a direct electrodeposition of the $Cu_2O$ thin film onto the vertically oriented CuO nanorods array to serve as the photoelectrode for the PEC water oxidation. The resulting copper-oxide-based heterostructure photoelectrode exhibited an enhanced PEC performance compared to common copper-oxide-based photoelectrodes, indicating good charge separation and transfer efficiency due to the band structure realignment at the interface. The photocurrent density and the optimal photocurrent conversion efficiency obtained on the CuO nanorods/$Cu_2O$ thin film heterostructure were $0.59mA/cm^2$ and 1.10% at 1.06 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for visible-light-driven hydrogen generation using a facile, low-cost, and scalable approach of combining electrodeposition and hydrothermal synthesis.

Morphological and Electrical Characteristics of nc-ZnO/ZnO Thin Films Fabricated by Spray-pyrolysis for Field-effect Transistor Application (전계효과트랜지스터 기반 반도체 소자 응용을 위한 스프레이 공정을 이용한 nc-ZnO/ZnO 박막 제작 및 특성 분석)

  • Cho, Junhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.1-5
    • /
    • 2021
  • Field-effect transistors based on solution-processed metal oxide semiconductors has attracted huge attention due to their intrinsic characteristics of optical and electrical characteristics with benefits of simple and low-cost process. Especially, spray-pyrolysis has shown excellent device performance which compatible to vacuum-processed Field-effect transistors. However, the high annealing temperature for crystallization of MOS and narrow range of precursors has impeded the progress of the technology. Here, we demonstrated the nc-ZnO/ZnO films performed by spray-pyrolysis with incorporating ZnO nanoparticles into typical ZnO precursor. The films exhibit preserving morphological properties of poly-crystalline ZnO and enhanced electrical characteristics with potential for low-temperature processability. The influence of nanoparticles within the film was also researched for realizing ZnO films providing good quality of performance.

Recent Advances and Trends in Filters for Highly Selective Metal Oxide Gas Sensors (산화물 반도체형 가스센서의 선택성 향상을 위한 필터 연구 동향 및 전략)

  • Seong-Yong Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • Metal-oxide-based semiconductor gas sensors are widely used because of their advantages, such as high response and simple sensing mechanism. Recently, with the rapid progress in sensor networks, computing power, and microsystem technology, sensor applications are expanding to various fields, such as food quality control, environmental monitoring, healthcare, and artificial olfaction. Therefore, the development of highly selective gas sensors is crucial for practical applications. This article reviews the developments in novel sensor design consisting of sensing films and physical and chemical filters for highly selective gas sensing. Unlike conventional sensors, the sensor structures with filters can separate the sensing and catalytic reactions into independent processes, enabling selective and sensitive gas sensing. The main objectives of this study are directed at introducing the role of various filters in gas-sensing reactions and promising sensor applications. The highly selective gas sensors combined with a functional filter can open new pathways toward the advancement of high-performance gas sensors and electronic noses.

Structural and Electrical Features of Solution-Processed Li-doped ZnO Thin Film Transistor Post-Treated by Ambient Conditions

  • Kang, Tae-Sung;Koo, Jay-Hyun;Kim, Tae-Yoon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.242-242
    • /
    • 2012
  • Transparent oxide semiconductors are increasingly becoming one of good candidates for high efficient channel materials of thin film transistors (TFTs) in large-area display industries. Compare to the conventional hydrogenated amorphous silicon channel layers, solution processed ZnO-TFTs can be simply fabricated at low temperature by just using a spin coating method without vacuum deposition, thus providing low manufacturing cost. Furthermore, solution based oxide TFT exhibits excellent transparency and enables to apply flexible devices. For this reason, this process has been attracting much attention as one fabrication method for oxide channel layer in thin-film transistors (TFTs). But, poor electrical characteristic of these solution based oxide materials still remains one of issuable problems due to oxygen vacancy formed by breaking weak chemical bonds during fabrication. These electrical properties are expected due to the generation of a large number of conducting carriers, resulting in huge electron scattering effect. Therefore, we study a novel technique to effectively improve the electron mobility by applying environmental annealing treatments with various gases to the solution based Li-doped ZnO TFTs. This technique was systematically designed to vary a different lithium ratio in order to confirm the electrical tendency of Li-doped ZnO TFTs. The observations of Scanning Electron Microscopy, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy were performed to investigate structural properties and elemental composition of our samples. In addition, I-V characteristics were carried out by using Keithley 4,200-Semiconductor Characterization System (4,200-SCS) with 4-probe system.

  • PDF

Sr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors by sol-gel process

  • Kim, Jaeyoung;Choi, Seungbeom;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.2-301.2
    • /
    • 2016
  • Metal-oxide thin-film transistors (TFTs) have gained a considerable interest in transparent electronics owing to their high optical transparency and outstanding electrical performance even in an amorphous state. Also, these metal-oxide materials can be solution-processed at a low temperature by using deep ultraviolet (DUV) induced photochemical activation allowing facile integration on flexible substrates [1]. In addition, high-dielectric constant (k) inorganic gate dielectrics are also of a great interest as a key element to lower the operating voltage and as well as the formation of coherent interface with the oxide semiconductors, which may lead to a considerable improvement in the TFT performance. In this study, we investigated the electrical properties of solution-processed high-k strontium-doped AlOx (Sr-AlOx) gate dielectrics. Using the Sr-AlOx as a gate dielectric, indium-gallium-zinc oxide (IGZO) TFTs were fabricated and their electrical properties are analyzed. We demonstrate IGZO TFTs with a 10-nm-thick Sr-AlOx gate dielectric which can be operated at a low voltage (~5 V).

  • PDF

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation (광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가)

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.