DOI QR코드

DOI QR Code

A Study on an Oxygen Vacancy and Conductivity of Oxide Thin Films Deposited by RF Magnetron Sputtering and Annealed in a Vacuum

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2016.07.26
  • Accepted : 2017.01.20
  • Published : 2017.02.25

Abstract

Usually, the oxygen vacancy is an important factor in an oxide semiconductor device because the conductivity is related to the oxygen vacancy, which is formed at the interface between oxide semiconductors and electrodes with an annealing processes. ZTO is made by mixing n-type ZnO and p-type $SnO_2$. Zink tin oxide (ZTO), zink oxide (ZnO) and tin oxide ($SnO_2$) thin films deposited by RF magnetron sputtering and annealed, to generate the oxygen vacancy, were analyzed by XPS spectra. The contents of oxygen vacancy were the highest in ZTO annealed at $150^{\circ}C$, ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The current was also increased with increasing the oxygen vacancy ions. The highest content of ZTO oxygen vacancies was obtained when annealed at 150. This is the middle level in compared with those of ZnO annealed at $200^{\circ}C$ and $SnO_2$ annealed at $100^{\circ}C$. The electrical properties of ZTO followed those of $SnO_2$, which acts a an enhancer in the oxide semiconductor.

Keywords

References

  1. T. Oh, Mater. Res. Bull., 77, 1, (2016). [DOI: http://10.1016/j.materresbull.2015.11.038]
  2. O. Mitrofanov and M. Mantra, J. Appl. Phys. 95, 6414 (2004). [DOI: http://dx.doi.org/10.1063/1.1719264]
  3. S. Y. Lee, Trans. Electr. Electron. Mater., 17, 143 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.3.143]
  4. T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, IEEE Trans. Electron Dev., 55, 3136 (2008). [DOI: http://dx.doi.org/10.1109/TED.2008.2003330]
  5. J. Maserjian and N. Zamani, Appl. Phys. Lett. 53, 559 (1982). [DOI: http://dx.doi.org/10.1063/1.329919]
  6. L. Plantier et al., Microelectron. Eng., 83, 2407 (2006). [DOI: http://10.1088/1009-0630/14/7/12]
  7. V. H. Nguyen and H. B. Gu, Trans. Electr. Electron. Mater., 17, 139 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.3.139]
  8. S. H. Lee, K. T. Park, and Y. G. Son, J. Kor. Mater. Res., 12, 240 (2002). [DOI: http://10.3740/MRSK.2002.12.4.240]
  9. L. S. Vlasenko and G. D. Watkins, Phys. Lett. B, 71, 125210 (2005). [DOI: http://dx.doi.org/10.1103/PhysRevB.71.125210]
  10. O. Mitrofanov and M. Manfra, J. Appl. Phys., 95, 6414 (2004). [DOI: http://dx.doi.org/10.1063/1.1719264]
  11. T. Oh and C. H. Kim, IEEE Trans. Plasma Science, 38, 1598 (2010). [DOI: http://dx.doi.org/10.1109/TPS.2010.2049665]
  12. T. Oh, Transactions of the Materials Research Society of Japan, 39, 475 (2014). [DOI: http://doi.org/10.14723/tmrsj.39.475]
  13. J. Raja, K. Jang, C.P.T. Nguyen, J. Yi, N. Balaji, S. Q. Hussain, and S. Chatterjee, Trans. Electr. Electron. Mater., 16, 234 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.5.234]
  14. K. C. Park and T. Y. Ma, J. Korean Inst. Electr. Mater. Eng., 26, 373 (2013). [DOI: http://10.4313/JKEM.2013.26.5.373]
  15. T. Y. Ma, J. Korean Inst. Electr. Mater. Eng., 25, 304 (2012). [DOI: http://10.4313/JKEM.2012.25.4.304]
  16. T. Oh, Trans. Electr. Electron. Mater., 17, 104 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.2.104]
  17. T. Oh, J. Nanosci. Nanotechnol., 14, 9047 (2014). [DOI: http://10.1166/jnn.2014.10071]
  18. H. Kim, Trans. Electr. Electron. Mater., 16, 285 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.5.285E]
  19. T. Oh, EML, 11, 853 (2015). [DOI: http://10.1007/s13391-015-4505-3]
  20. T. Oh and C. K. Choi, J. Korean Phys. Soc., 56, 1150 (2010). [DOI: http://10.3938/jkps.56.1150]

Cited by

  1. Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol–gel method vol.29, pp.1, 2018, https://doi.org/10.1007/s10854-017-7959-2
  2. Micro- and Nanostructures vol.215, pp.19, 2018, https://doi.org/10.1002/pssa.201800275