DOI QR코드

DOI QR Code

Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation

  • Park, Jong-Hyun (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2020.07.13
  • Accepted : 2020.08.20
  • Published : 2020.09.27

Abstract

Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/㎠ and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.

Keywords

References

  1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
  2. P. V. Kamat, J. Phys. Chem. C, 111, 2834 (2007). https://doi.org/10.1021/jp066952u
  3. C.-J. Winter, Int. J. Hydrogen Energy, 34, S1 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  4. A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2009). https://doi.org/10.1039/B800489G
  5. F. E. Osterloch, Chem. Soc. Rev., 42, 2294 (2013). https://doi.org/10.1039/C2CS35266D
  6. X. Chen, S. Chen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010). https://doi.org/10.1021/cr1001645
  7. Y. Yang, D. Xu, Q. Wu and P. Diao, Sci. Rep., 6, 30158 (2016). https://doi.org/10.1038/srep30158
  8. Y. Liu, Y. Gu., X. Yan, Z. Kang, S. Lu, Y. Sun and Y. Zhang, Nano Res., 8, 2891 (2015). https://doi.org/10.1007/s12274-015-0794-y
  9. M. Y. Wang, L. Sun, Z. Q. Lin, J. H. Cai, K. P. Xie and C. J. Lin, Energy Environ. Sci., 6, 1211 (2013). https://doi.org/10.1039/c3ee24162a
  10. D. A. Wheeler, G. M. Wang, Y. C. Ling, Y. Li and J. Z. Zhang, Energy Environ. Sci., 5, 6682 (2012). https://doi.org/10.1039/c2ee00001f
  11. Z. Kang, Y. S. Gu, X. Q. Yan, Z. M. Bai, Y. C. Liu, S. Liu, X. H. Zhang, Z. Zhang, X. J. Zhang and Y. Zhang, Biosens. Bioelectron., 64, 499 (2015). https://doi.org/10.1016/j.bios.2014.09.055
  12. Z. Kang, X. Q. Yan, Y. F. Wang, Z. M. Bai, Y. C. Liu, Z. Zhang, P. Lin, X. H. Zhang, H. G. Yuan and X. J. Zhang, Sci. Rep., 5, 7882 (2015). https://doi.org/10.1038/srep07882
  13. A. Fujishima and K. Honda, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  14. V. Srikant and D. R. Clarke, J. Appl. Phys., 83, 5447 (1998). https://doi.org/10.1063/1.367375
  15. J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999). https://doi.org/10.1021/ar9700365
  16. N. Beermann, L. Vayssieres, S.-E. Lindquist and A. Hagfeldt, J. Electrochem. Soc., 147, 2456 (2000). https://doi.org/10.1149/1.1393553
  17. N. L. Hung, H. Kim and D. Kim, Korean J. Mater. Res., 25, 358 (2015). https://doi.org/10.3740/MRSK.2015.25.7.358
  18. R. Zhang, P. G. Yin, N. Wang and L. Guo, Solid State Sci., 11, 865 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016
  19. J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi B, 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224
  20. P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock and R. G. Gordon, Adv. Energy Mater., 1. 1116 (2001). https://doi.org/10.1002/aenm.201100330
  21. T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014). https://doi.org/10.1039/C3CS60378D
  22. D. T. Sawyer, A. J. Sobkowiak and J. Roberts, Jr., Electrochemistry for Chemists, p.196, 2nd ed., John Wiley & Sons, New York (1995).
  23. J.-H. Park and H. Kim, Korean J. Mater. Res., 30, 239 (2020). https://doi.org/10.3740/MRSK.2020.30.5.239