• Title/Summary/Keyword: overturned fold

Search Result 4, Processing Time 0.018 seconds

Structural Geometry of a Regional-scale Overturned Fold in the Daecheong Island, Central-western Korean Peninsula (한반도 중서부 대청도에 발달하는 광역규모 과습곡의 구조기하학적 특징)

  • Jeong-Yeong Park;Deung-Lyong Cho;Seung Hwan Lee;Yujung Kwak;Seung-Ik Park
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • This study reports the structural geometry and folding mechanism of a regional-scale overturned fold in the Daecheong Island, central-western part of the Korean Peninsula. Based on low-hemisphere stereographic and down-plunge projections using data from a detailed field survey, we classify the regional-scale fold as an open overturned fold shallowly plunging toward NE. The asymmetric and symmetric parasitic folds in the limb and hinge zones indicate layer-parallel shortening prior to flexural-flow folding. Fold dating must be required to decipher the orogenic process causing the regional-scale overturned fold in the Daecheong Island.

Igneous Activity and Geological Structure of the Ogcheon Metamorphic Zone in the Kyemyeongsan area, Chungju, Korea (충주 계명산지역 옥천변성대의 화성활동과 지질구조)

  • 강지훈;류충렬
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.151-165
    • /
    • 1997
  • The Kyemyeongsan area of Chungju in the NE part of the Ogcheon metamorphic zone, Koera, consists mainly of the Ogcheon Supergroup(Taehyangsan Quartzite, Hyangsanri Dolomite and Kyemyeogsan Formation) and the MeSozoic Chungju granite. The Kyemyeongsan Formation is composed mainly of metamorphic rocks of various grades derived from conglomeratic, basic, acidic, pelitic and psammitic rocks. The basic and acidic rocks show alternated or interfingered appearence, indicating that they were derived form bimodal type of magmatism in rift environment. Conglomeratic rocks overlie acidic volcanic rocks in geneal, but are underlain by both acidic plutonic and volcanic rocks. This indicaties that the acidic magmatism before the formation of conglomeratic rocks was different from that during or after the formation of conglomeratic rocks in its occurrence mode. The geological structure of the Ogcheon metamorphic zone in the Kyemyeongsan area, Chungju was formed at least by three phases of deormation. The first phase deformation(D1) formed a regional-scale sheath-type fold(F1) closed into the east. Its axial phane(S1) strikes NNW to NW and dips WSW to SW. The stetching lineation(L1), related to the sheath-type fold, plunges westward. The second phase deformation (D2) formed asymmetric fold(F2) of ESE-to SE-vergence with NNE to NE striking axial plane(S2) and $20~45^{\circ}/210~230^{\circ}$ plunging axis(L2). The F2 fold reoriented the original westward plunging L1 into northwestward plunging L1 in its lower limb(overturned limb). The third phase of deformation(D3) was recognized as chevron-type fold(F3) with $45^{\circ}/265$^{\circ}$ plunging axis. The F3 fold was formed by the compression of N-S direction, resulting in the reorientation of the original $20-45^{\circ}/210~230^{\circ}$ plunging L2 into mainly $35~45^{\circ}/260~280^{\circ}$ and subsidiarily $30~45^{\circ}/135~165^{\circ}$ plunging L2. After this deformation, open fold with NS striking and steeply E or W dipping axial plane is formed by the compression of E-W direction.

  • PDF

The Feature of Indosinian Movement and its comparison with Yanshanian Movement in the Yanshanian area, China (중국 연산지역의 인지운동(印支運動)의 특징 및 연산운동(燕山運動)과의 비교)

  • 조성윤;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 1997
  • Tectonic movements in the Mesozoic were significant events to structural evolution in East China, so far as to West Pacific area. Typical Mesozoic structures were formed and outcropped in Yanshanian mountain area in which Yanshanian movement was named. It is generally considered that the most of outcropping structures in this area were formed in Yanshanian movement. But general studies indicated recently that more than half of the folds were formed in Yanshanian movement. But general studies indicated recently that more than half of the folds were formed and most of fault were in great reverse activity during Indosinian movement in Late-Triassic epoch. The tectonic dynamics setting of Indosinian move ment is a N-S compressive stress system originated by northward movement of Sino-Korean massif and its collison with Xingan-Mongolia fold zone. A series of closed folds (nearly E-W axial trace)and some overturned folds were formed in Indosinian movement and incoaxially superposed by Yanshanian deformation, Faulting characteristcs in the area were thrust faulting caused by compressive stress in Indosinian movement, some of which appear to be positive structural inversion, and oblique-thrust caused by compressive-shear in Yanshanian movement.

  • PDF

Comparative Studies between Chungju and Seosan Groups (충주층군(忠州層群)과 서산층군(瑞山層群)의 비교연구(比較硏究))

  • Na, Ki Chang;Kim, Hyung Shik;Lee, Dong Jin;Lee, Sang Hun
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.177-188
    • /
    • 1982
  • The Chungju and Seosan Groups have been known usually as Precambrian formations in Korea. But their relative and absolute ages have been controvericial problem in relation with other geologic system such as so-called Ogcheon and Yeoncheon Systems in Korea. This study has mainly focused on the corelation of the Chungju Group with the Seosan Group in their stratigraphy, structure, metamorphism, and iron ore deposits. In the process of study, the auther surveyed and reclassified the Chungju and Seosan Groups and corelated with Gyeonggi and Ogch cheon metamorphic belts and got some new data. The Chungju iron-bearing formations showing transtitional relation with the Gyeonggi Gneiss Complex and the Jangamri Formation consisting mainly of pebble bearing calcarious phyllite, should be seperated from the Gyemyeongsan formation which is mainly composed of metavolcanic rocks. The Jangamri Formation and the coaly phyllite, which can be corelated respectively with the Hwaggangri Formation and Changri Formation in Ogcheon Group, are repeated in the Gyemyeonsan and Munjuri Formations with the overturned anticlinal folding(F1). So the Chungju Group which was defined as an indipendant geologic unit from the Ogcheon Group should be limited only on the Chungju iron Formation. The Seosan Group can be classified stratigraphically such as Seosan Formation consisting of iron-bearing quartzite and mica schist, Daesan Formation overlying unconformably on the Seosan Formation and Gyeonggi Gneiss Complex. Taean Formation overlying unconformably on the Daesan Formation should be seperated from Seosan Group. There are many similarity in the stratigrphy, structure, and metamorphic facies between Chungju and Seosan Groups exept the metavolcanic rocks in the Gyemyeongsan and Munjuri Formations and the pebble bearing calcareous phyllite in the Jangamri Formation. The two Groups were deformed with two kinds of differant stages, the first shows $N30^{\circ}-40^{\circ}E$ trend of fold axis, the second $N70^{\circ}-80^{\circ}W$ respectively. The Seosan Formation, which is the lowest formation in Seosan Group and bearing the iron formation, was metamorphosed at 2500 m. y. before. These age is similar with the metamorphic age of Gyeonggi metamorphic belt and with the age of Algoman and Kenoran Orogenies which devide the Precambrian into Archean and Proterozoic Era. So the Seosan Formation, which is included in some migmatitic rocks of Gyeonggi Gneiss Complex, is the oldest formation in Korea and can be corelated with the Anshan Group which bears the oldest iron formation in China. The metamorphic facies of the Precambrian metamorphism in Seosan area is simillar with that of Chungju area, showing high temperature-low pressure amphibolite facies which is corelated with the Gyeonggi metamorphic belt, the oldest metamorphic belt in Korea ($650^{\circ}-680^{\circ}C$, 3.2-4.4 Kb). The high temperature intermediate pressure amphibolite facies in Seosan area with the low temperature-intermediate presure greenschist facies of Taean formation is corelated with that of Ogcheon Group ($590^{\circ}-640^{\circ}$ C, 5.2-6.3 Kb). The Chungju and Seosan iron formations were deposited in Archean, showing geochemical composition of Precambrian iron formations. The Chungju iron formation was mainly formed by the chemical precipitation, on the other hand, the Seosan iron formation was formed by alternated action of chemical and detrital depositions.

  • PDF