DOI QR코드

DOI QR Code

Structural Geometry of a Regional-scale Overturned Fold in the Daecheong Island, Central-western Korean Peninsula

한반도 중서부 대청도에 발달하는 광역규모 과습곡의 구조기하학적 특징

  • Jeong-Yeong Park (Geology & Space Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Deung-Lyong Cho (Geology & Space Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Seung Hwan Lee (Geology & Space Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yujung Kwak (Department of Geology, Kyungpook National University) ;
  • Seung-Ik Park (Department of Geology, Kyungpook National University)
  • 박정영 (한국지질자원연구원 국토우주지질연구본부) ;
  • 조등룡 (한국지질자원연구원 국토우주지질연구본부) ;
  • 이승환 (한국지질자원연구원 국토우주지질연구본부) ;
  • 곽유정 (경북대학교 지질학과) ;
  • 박승익 (경북대학교 지질학과)
  • Received : 2024.01.22
  • Accepted : 2024.02.22
  • Published : 2024.02.29

Abstract

This study reports the structural geometry and folding mechanism of a regional-scale overturned fold in the Daecheong Island, central-western part of the Korean Peninsula. Based on low-hemisphere stereographic and down-plunge projections using data from a detailed field survey, we classify the regional-scale fold as an open overturned fold shallowly plunging toward NE. The asymmetric and symmetric parasitic folds in the limb and hinge zones indicate layer-parallel shortening prior to flexural-flow folding. Fold dating must be required to decipher the orogenic process causing the regional-scale overturned fold in the Daecheong Island.

본 연구는 한반도 중서부 대청도에 발달하는 광역규모 습곡의 구조기하학적 특징과 형성 기작에 대하여 보고한다. 야외에서 획득한 구조 요소 자료를 기반으로 구조 영역별 등면적 하반구 스테레오 투영과 습곡된 지층 경계의 하향 투영을 수행한 결과, 연구지역에 발달하는 습곡은 북동 방향으로 완만하게 침강된 개방 과습곡으로 분류된다. 과습곡 날개부의 비대칭 기생습곡과 힌지부의 대칭 기생습곡은 지층과 평행한 압축작용을 경험한 이후 요굴흐름 기작이 발생했음을 의미한다. 한반도 중서부의 조산운동사에서 대청도 과습곡이 가지는 의미를 규명하기 위해 향후 습곡의 형성시기 규명이 반드시 필요하다.

Keywords

Acknowledgement

이 논문은 한국지질자원연구원 기본사업인 국토 지질조사 및 지질도·지질주제도 발간(GP2020-003) 및 한국연구재단 개인기초연구(중견연계 신진후속)사업(RS-2023-00208180)의 지원을 받았습니다.

References

  1. Cho, D.-L., Lee, S.H. and Park, J.-Y. (2021) Geological report of the Baengnyeongdo.Daecheongdo.Socheongdo sheets (1:50,000). Korea Institute of Geoscience and Mineral Resources, 73p (in Korean with English abstract).
  2. Cho, M., Kim, Y. and Ahn, J. (2007) Metamorphic evolution of the Imjingang Belt, Korea: Implications for Permo-Triassic Collisional Orogeny. Int. Geol. Rev., v.49, p.30-51, doi: 10.2747/0020-6814.49.1.30.
  3. Cho, M., Lee, Y., Kim, T., Cheong, W., Kim, Y. and Lee, S.R. (2017) Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: An overview. Geosci. J., v.21, p.845-865, doi: 10.1007/s12303-017-0044-2.
  4. de Jong, K., Han, S. and Ruffet, G. (2015) Fast cooling following a Late Triassic metamorphic and magmatic pulse: implications for the tectonic evolution of the Korean collision belt. Tectonophysics, v.662, p.271-290, doi: 10.1016/j.tecto.2015.06.016.
  5. Fitz-Diaz, E. and van der Pluijm, B. (2013) Fold dating: A new Ar/Ar illite dating application to constrain the age of deformation in shallow crustal rocks. J. Struct. Geol., v.54, p.174-179, doi: 10.1016/j.jsg.2013.05.011.
  6. Fossen, H. (2016) Structural Geology. Cambridge University Press. 524p.
  7. Frehner, M. and Schmalholz, S.M. (2006) Numerical simulations of parasitic folding in multilayers. J. Struct. Geol., v.28, p.1647-1657, doi: 10.1016/j.jsg.2006.05.008.
  8. Hudleston, P.J. and Treagus, S.H. (2010) Information from folds: A review. J. Struct. Geol., v.32, p.2042-2071, doi: 10.1016/j.jsg.2010.08.011.
  9. Kee, W.-S., Kim, S.W., Kim, H., Hong, P., Kwon, C.W., Lee, H.-J., Cho, D.-L., Koh, H.J., Song, K.-Y., Byun, U.H., Jang, Y. and Lee, B.C. (2019) Geologic map of Korea (Scale 1:1,000,000). Korea Institute of Geoscience and Mineral Resources.
  10. Kim, J.-N., Ree, J.-H., Kwon, S.-T., Park, Y., Choi, S.-J. and Cheong, C.-S. (2000) The Kyonggi Shear Zone of the Central Korean Peninsula: Late orogenic imprint of the North and South China collision. J. Geol., v.108, p.469-478, doi: 10.1086/314412.
  11. Kim, J.-Y. and Kim, T.-S. (1999) Occurrence and geological significance of stromatolites from the Precambrian Strata in the Socheong Island, Incheon, Korea. J. Korean Earth Sci. Soc., v.20, p.111-125 (in Korean with English abstract).
  12. Kim, J.Y. and Han, S.H. (2010) Geology and stromatolite fossil localities of Socheong Island, Korea: An introductory review. J. Korean Earth Sci. Soc., v.31, p.8-17, doi: 10.5467/JKESS.2010.31.1.008 (in Korean with English abstract).
  13. Kim, M.J., Park, J.-W., Lee, T.-H., Song, Y.-S. and Park, K.-H. (2016) LA-MC-ICPMS U-Pb ages of the detrital zircons from the Baengnyeong Group: Implications of the dominance of the Mesoproterozoic zircons. Econ. Environ. Geol., v.49, p.433-444, doi: 10.9719/EEG.2016.49.6.433 (in Korean with English abstract).
  14. Kim, M.J., Ha, Y., Park, J.-W. and Park, K.-H. (2021) U-Pb ages and Hf isotopic compositions of the detrital zircons from Baengnyeongdo and Daecheongdo: Correlation with North Korea and the North China Craton. J. Geol. Soc. Korea, v.57, p.17-33, doi: 10.14770/jgsk.2021.57.1.17 (in Korean with English abstract).
  15. Kim, S. and Choi, S.H. (2021) Geochemical studies on the mantle source lithologies of late Cenozoic alkali basalts from Baengnyeong, Pyeongtaek, and Asan in the Korean Peninsula. Lithos, v.404-405, 106434, doi: 10.1016/j.lithos.2021.106434.
  16. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D., Ryu, I.-C., Rajesh, V.J., Kim, C.-B., Guo, J. and Zhai, M. (2006) Phanerozoic high-pressure eclogite and intermediate pressure granulite facies metamorphism in the Gyeonggi massif, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, v.92, p.357-377, doi: 10.1016/j.lithos.2006.03.050.
  17. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W. (2008) SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Res., v.162, p.475-497, doi: 10.1016/j.precamres.2007.10.006.
  18. Kim, S.W., Kwon, S., Santosh, M., Williams, I.S. and Yi, K. (2011) A Paleozoic subduction complex in Korea: SHRIMP zircon U-Pb ages and tectonic implications. Gondwana Res., v.20, p.890-903, doi: 10.1016/j.gr.2011.05.004.
  19. Kim, S.W., Kwon, S., Park, S.-I., Yi, K., Santosh, M. and Kim, H.S. (2017) Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula: tectonic implications. Gondwana Res., v.47, p.308-322, doi: 10.1016/j.gr.2016.05.016.
  20. Kim, S.W., Kwon, S., Santosh, M., Cho, D.-L., Kee, W.-S., Lee, S.-B. and Jeong, Y.-J. (2019) Detrital zircon U-Pb and Hf isotope characteristics of the Early Neoproterozoic successions in the central-western Korean Peninsula: Implication for the Precambrian tectonic history of East Asia. Precambrian Res., v.322, p.24-41, doi: 10.1016/j.precamres.2018.12.008.
  21. Lacombe, O., Beaudoin, N.E., Hoareau, G., Labeur, A., Pecheyran, C. and Callot, J.-P. (2021) Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains. Solid Earth, v.12, p.2145-2157, doi: 10.5194/se-12-2145-2021.
  22. Lee, B.Y., Oh, C.W., Cho, D.L., Zhai, M., Lee, B.C., Peng, P. and Yi, K. (2019) The Devonian back-arc basin and Triassic arccontinent collision along the Imjingang belt in the Korean Peninsula and their tectonic meaning. Lithos, v.328-329, p.276-296, doi: 10.1016/j.lithos.2019.01.011.
  23. Lee, S.-J., Kim, J.-Y. and Lee, K.C. (2003) Bacterial microfossils from Precambrian sedimentary rocks, Socheong Island, Korea. J. Geological Soc. Korea. v.39, p.171-182 (in Korean with English abstract).
  24. Lim, S.-B., Choi, H.-I., Kim, B.C. and Kim, J.C. (1999) Depositional systems of the Sedimentary basins (I)-Depositional systems and their evolution of the Proterozoic Paegryeong Group and Taean Formation. Korea Institute of Geology, Mining and Materials, 116p (in Korean).
  25. Marshak, S., Wilkerson, M.S. and Defrates, J. (2024) Kinematic and tectonic implications of crenulation cleavage, kink bands, and mesoscopic folds in the Barboo Syncline, Wisconsin (~1.45 Ga Picuris Orogen). J. Struct. Geol., v.178, 105007, doi: 10.1016/j.jsg.2023.1105007.
  26. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K. (2005) First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu Collision Belt in China. J. Geol., v.113, p.226-232, doi: 10.1086/427671.
  27. Oh, C.-W., Imayama, T., Yi, S.-B., Kim, T., Ryu, I.-C., Jeon, J. and Yi, K. (2014) Middle Paleozoic metamorphism in the Hongseong area, South Korea, and tectonic significance for Paleozoic orogeny in northeast Asia. J. Asian Earth Sci., v.95, p.203-216, doi:10.1016/j.jseaes.2014.08.011.
  28. Park, J.-Y., Park, S.-I. and Choi, T. (2020) Microstructural and geochronological analyses of Mesozoic ductile shear zones in the Western Gyeonggi Massif, Korea: Implications for an orogenic cycle in the East Asian continental margin. Minerals, 10, 362, doi: 10.3390/min10040362.
  29. Park, S.-I., Kim, S.W., Kwon, S., Thanh, N.X., Yi, K. and Santosh, M. (2014) Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: Insights from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochronology. Gondwana Res., v.26, p.684-698, doi: 10.1016/j.gr.2013.07.015.
  30. Park, S.-I., Kwon, S., Kim, S.W., Hong, P.S. and Santosh, M. (2018) A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: new structural, geochemical, and chronological evidence. J. Asian Earth Sci., v.157, p.166-186, doi: 10.1016/j.jseaes.2017.08.009.
  31. Park, S.-I., Noh, J., Cheong, H.J., Kwon, S., Song, Y., Kim, S.W. and Santosh, M. (2019) Inversion of two-phase extensional basin systems during subduction of the Paleo-Pacific Plate in the SW Korean Peninsula: Implication for the Mesozoic "Laramide-style" orogeny along East Asian continental margin. Geosci. Front., v.10, p.909-925, doi: 10.1016/j.gsf.2018.11.008.
  32. Ramsay, J.G. (1967) Folding and Fracturing of Rocks. Mcgraw-hill book company, New York, 568p.
  33. Torremans, K., Muchez, P. and Sintubin, M. (2018) Non-cylindrical parasitic folding and strain partitioning during the Pan-African Lufilian orogeny in the Chambishi-Nkana Basin, Central African Copperbelt. Solid Earth, v.9, p.1011-1033, doi: 10.5194/se-9-1011-2018.
  34. Wang, Y., Zwingmann, H., Zhou, L., Lo, C.-h., Viola, G. and Hao, J. (2016) Direct dating of folding events by 40Ar/39Ar analysis of synkinematic muscovite from flexural-slip planes. J. Struct. Geol., v.83, p.46-59, doi: 10.1016/j.jsg.2015.12.003