• Title/Summary/Keyword: output Power

Search Result 8,459, Processing Time 0.032 seconds

A study on the Power Characteristics of Hybrid Power System by Active Power Management (능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구)

  • Lee, Bohwa;Park, Poomin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.833-841
    • /
    • 2016
  • The 200 W electrically powered unmanned aerial vehicle, which is studied in this research, uses solar cells, a fuel cell and batteries as the main power source simultaneously. The output of each power source performs power control for each power source by the active power control method so that an adequate capacity of the battery could be maintained while limiting the maximum output of the fuel cell. The output variation for each power source under the active power control method was identified through an integrated ground test. In addition, the effect of limiting the maximum output of the fuel cell on the output variation of the entire system was experimentally identified, and it was confirmed that the adequate maximum output value of the fuel cell for preventing the overdischarge of six series-connected, small size batteries for fuel cell systems is 150 W.

Development of Eco Driving System for Agricultural Tractor (트랙터용 경제운전 안내장치 개발)

  • Park, Seok-Ho;Kim, Young-Jung;Im, Dong-Hyeok;Kim, Chung-Kill;Jung, Sang-Cheol;Kim, Hyeok-Ju;Jang, Yang;Kim, Sung-Su
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.77-84
    • /
    • 2010
  • In this study, we tried to predict tractor power output, fuel consumption rate and work performance indirectly in order to develop an eco driving system. Firstly, we developed equations which could predict tractor power output and fuel consumption rate using characteristic curves of tractor power output. Secondly, with actual engine rpm determined by initial engine rpm and work load, tractor power output and fuel consumption rate were forecasted. Thirdly, with speed signals of GPS sensor system, it was possible to foresee tractor work performance and fuel consumption rate. Lastly, precision of the eco driving system was evaluated through tractor PTO test, and effects of the eco driving system were investigated in the plowing and rotary tilling operations. Engine rpm, power output, fuel consumption rate, work performance and fuel consumption rate per plot area were displayed in the eco driving system. Predicted tractor power outputs in the full load curve were well coincided with the actual power output of prototype, but small differences, 1 to 6 ㎾, were found in the part load curve. Error of the fuel consumption rate was 0.5 L/h, 4.5%, the greatest, and 1 to 3 L/h at the part load curve. It was shown that 69% and 53% of fuel consumption rates could be reduced in plowing and rotary tilling operations, respectively, when the eco driving system was installed in tractor.

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an installation angle (건물일체형 투광성 PV모듈의 설치각도별 발전특성에 관한 연구)

  • Song, Jong-Hwa;Yoon, Jong-Ho;An, Young-Sub;Kim, Seok-Ge;Lee, Sung-Jin;Choung, Youn-Kyoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The experiment results showed power outputs of transparent thin-film PV module applied to full-scale mock up model on slope of $90^{\circ},\;30^{\circ},\;0^{\circ}$ to the south. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result. the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$ with respect to the inclined slope of the module, Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth, Specipically. the varying power output with incidence angle of PV module can be resulted from the influence of incidence angle modifier of glass on PV module. That is, the solar energy transmission can be reduced as an increase of incidence angle of PV module. Therefore, when the inclined slope of the PV module was over $70^{\circ}$ there was a significant reduction of power output, and this was caused by the decrease of solar energy transmission in the transparent thin-film PV module.

A Study of Wind Turbine by Using ANSYS Program (ANSYS 프로그램을 이용한 풍력발전에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.565-571
    • /
    • 2018
  • This paper designed the main blade in V-shape and tried to identify the design conditions by changing the main blade number and sub-blade number. Power output and power coefficient increased as main blade number increased. Sample 2 shows a 50% increase in power output compared to sample1. Sample 3 and sample4 increased by 92.8% and 114.7%, respectively. Sample 2 shows a 38.4% increase in power coefficient compared to sample1. Sample 3 and sample4 increased by 92.3% and 107.7%, respectively. Power output and power coefficient increased as sub-blade number increased. Sample 6 shows a 33.3% increase in power output compared to sample 5 and Sample 7 increased by 42.1%. Compared to sample5, efficiency increased by 35.3% for sample 5 and 47.1% for sample 7. The highest power output and power coefficient were measured when main blade and sub-blade were each 30 number. Sample 8 increased power output by 5.6% and power efficiency by 3.7% compared to sample 4. Compared to sample 7, sample 8 increased power efficiency by 12% and power output by 17.3%.

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

Nonlinear Input-Output Feedback Linearizing Control for Power System Stabilization (전력계통 안정화를 위한 비선형 입출력 궤환 선형화 제어기)

  • Kim, Dong-Gun;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.672-674
    • /
    • 2004
  • Many nonlinear controllers for the power system are based on nonlinear models involving the power angle as an element of the state, and therefore the reference value for the power angle is needed. As this reference value is not generally available, it is difficult to apply such nonlinear control methods in practice. To deal with this problem, we present an input-output feedback linearizing control scheme by selecting the output as a combination of the squared voltage and the relative frequency. It is shown that the internal dynamics are locally stable with controllable damping, and that the frequency remains bounded for all time. Simulations illustrate the effectiveness of the proposed method.

  • PDF

Multiple Output Forward Converter for PC Power Supply with Weighted Voltage Mode Control (가중치 전압 모드 제어를 적용한 PC 전원용 다중출력 포워드 컨버터)

  • 이경주;김성민;이득기;정종진;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.307-316
    • /
    • 2001
  • In this paper, the multiple output forward converter forPC power supply with weighted voltage mode control which improves the characteristics of DC and transient responses is analyzed and designed. The power stage model of this converter including all the major parasitic components is derived and the small signal model is also derived. Determination of the weighting factors and a design procedure for the loop compensation are presented. Finally, the proposed controller is verified through the simulation of three output forward converter with SABER, and the experiment.

  • PDF

Phase-Locked Loop with Leakage and Power/Ground Noise Compensation in 32nm Technology

  • Kim, Kyung-Ki;Kim, Yong-Bin;Lee, Young-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.241-246
    • /
    • 2007
  • This paper presents two novel compensation circuits for leakage current and power supply noise (PSN) in phase locked loop (PLL) using a nanometer CMOS technology. The leakage compensation circuit reduces the leakage current of the charge pump circuit and the PSN compensation circuit decreases the effect of power supply variation on the output frequency of VCO. The PLL design is based on a 32nm predictive CMOS technology and uses a 0.9 V power supply voltage. The simulation results show that the proposed PLL achieves 88% jitter reduction at 440 MHz output frequency compared to the PLL without leakage compensator and its output frequency drift is little to 20% power supply voltage variations. The PLL has an output frequency range of 40 $M{\sim}725$ MHz with a multiplication range of 1-1023, and the RMS and peak-to-peak jitter are 5psec and 42.7 psec, respectively.

Study of a Durability Test for Single-input Multi-output Power Take-off Gearboxes (단일입력 다출력 PTO 기어박스의 내구성시험에 관한 연구)

  • Lee, Yong Bum;Yoo, Han Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This study analyzed a life test method for a power take-off (PTO) gearbox. An engine transfers mechanical power (rotation and torque) to a hydraulic pump through a PTO Gearbox with one input shaft and three output shafts. PTO gear box durability under high loads over long time periods was tested using dynamometers. In order to reflect the rated operating conditions, power must be distributed to each output shaft, and experiments were conducted under various conditions to verify the characteristics of the distributed power. An accelerated life test was designed using speed and torque as acceleration factors. Also, efficiency tests were conducted under various load conditions. Also, a lubrication oil composition analysis was performed to analyze gearbox wear status.

Single-Stage Double-Buck Topologies with High Power Factor

  • Pires, Vitor Fernao;Silva, Jose Fernando
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.655-661
    • /
    • 2011
  • This paper presents two topologies for single-stage single-phase double-buck type PFC converters, designed to operate at high power factor, near sinusoidal input currents and adjustable output voltage. Unlike the known buck type PFC topologies, in which the output voltage is always lower than the maximum input voltage, the proposed converters can operate at output voltages higher than the ac input peak voltage. A reduced number of switches on the main path of the current are another characteristic of the two proposed topologies. To shape the input line currents, a fast and robust controller based on a sliding mode approach is proposed. This active non-linear control strategy, applied to these converters allows high quality input currents. A Proportional Integral (PI) controller is adopted to regulate the output voltage of the converters. This external voltage controller modulates the amplitude of the sinusoidal input current references. The performances of the presented rectifiers are verified with experimental results.