• Title/Summary/Keyword: osteoclast formation

Search Result 191, Processing Time 0.021 seconds

Forsythiae Fructus Extract Inhibits RANKL-Induced Osteoclast Differentiation and Prevent Bone Loss in OVX-Induced Osteoporosis Rat (연교의 파골세포 분화 및 골 흡수 억제 기전 연구)

  • Eom, Ji-Whan;Kim, Jae-Hyun;Kim, Minsun;Kim, Sangwoo;Shin, Hwajeong;Jung, Hyuk-Sang;Sohn, Youngjoo
    • Korean Journal of Acupuncture
    • /
    • v.36 no.2
    • /
    • pp.115-126
    • /
    • 2019
  • Objectives : Osteoporosis is a condition characterized by low bone mass and increased bone fragility. It has become a major problem of senior citizens. The purpose of this study is to experiment the effect of water extract of Forsythiae Fructus (wFF) on osteoclast differentiation; and the other purpose is to examine the effect of wFF on osteoporosis in ovariectomized rat. Methods : To investigate the effect of wFF on osteoclast differentiation and activity, RAW 264.7 cells were used. The number of TRAP positive cell, TRAP activity, pit area, mRNA expression of makers (RANK, TRAP, CA II, CTK, MMP-9, NFATc1, c-Fos), protein expression of makers (NFATc1, c-Fos) were investigated. For in vivo study, 40 female Sprague-Dawley (SD) rats were induced osteoporosis by ovariectomy (OVX) and then tested for anti-osteoporosis effect by administration of wFF. Results : wFF suppressed osteoclatogenesis, TRAP activity and pit area formation. Moreover, wFF decreased the expression of master differentiation factors (NFATc1, c-Fos) and also reduced the osteoclastogenesis-related markers (TRAP, CA II, CTK, MMP-9). These suggest that wFF inhibit osteoclasts differentiation and bone resorption. In the OVX rat model, wFF inhibited decreasing of BMD and trabecular area. Conclusions : Forsythiae Fructus should be effective for osteoporosis prevention and treatment.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

Inhibitory effects of Oxya chinensis sinuosa ethanol extract on RANKL-induced osteoclast differentiation

  • Ra-Yeong Choi;Bong Sun Kim;Sohyun Park;Minchul Seo;Joon Ha Lee;HaeYong Kweon;In-Woo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.13-18
    • /
    • 2024
  • The rice field grasshopper, Oxya chinensis sinuosa (OC), has traditionally been utilized in Korea for various purposes; however, its potential benefits in the context of osteoporosis remain unclear. The results revealed that OC ethanol extract (OCE) significantly inhibited the formation and activity of tartrate-resistant acid phosphatase (TRAP)-positive cells in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, OCE, at concentrations ranging from 100 to 400 ㎍/mL, demonstrated a dose-dependent reduction in the protein expression of osteoclast-specific markers, including nuclear factor of activated T cell cytoplasmic 1, c-Src, and TRAP, when compared to RANKL stimulation alone. Additionally, OCE significantly inhibited RANKL-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not the activation of extracellular signal-regulated kinase. Collectively, these results indicate that OCE suppresses osteoclastogenesis by attenuating the phosphorylation of p38 MAPK and JNK. Consequently, these findings suggest that OCE holds promise for the prevention of osteoporosis.

The Effects of Dex and PDGF-BB on Bony Healing of Calvarial Defect in Rats (골재생 과정에서 혈소판유래성장인자-BB와 덱사메타존의 병용 효과)

  • Lee, Jae-Mok;Park, Jin-Woo;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.573-584
    • /
    • 2003
  • Bone remodeling results from the combined process of bone resorption and new bone formation which is regulated in part by some of Dexamethasone related proliferation & mineralization of cultured bone cell and polypeptide growth factors such as platelet derived growth factor(PDGF), which has been known to be an important local regulator of bone cell activity and participate in normal bone remodeling. To evaluate the effects of Dex and PDGF on bony healing of calvarial defect in rats, 10 ng/ml PDGF were applied on P group and 10 ng/ml PDGF and $10^7$ M Dex were applied PD group. 4 rats in each group were sacrificed at 7, 14. 21 days after operation respectively, and the tissue blocks were prepared for light microscope with H-E for evaluation of overall healing, with TRAP(tartrate resistant acid phosphatase) for evaluation of osteoclastic activity and with immunohistochemical staining for macrophages. The results were as follows : 1. In all group, healing aspects were progressed from 7 days to 21 days in soft and bony tissue, but complete repair were not observed in bony defect 2. PDGF and control group were showed similar bony healing aspect , but bony healing in combination of PDGF-BB and Dex were observed slower aspect compared to PDGF and control group from early healing times. 3. There were no significant difference on activities of osteoclast and macrophages in bony healing between control and experimental group In conclusion, PDGF were not influenced on bony healing of defect and combination of PDGF-BB and Dex were showed slower healing through early healing times. it was considered that Dex compared to PDGF did influenced on early hone formation factors in healing period

Safflower Bud Dietary Prevents Ovariectomy-induced Osteoporosis in Rats

  • Choi, Joo Hee;Lim, Seul Ki;Jang, Ah Ra;Nho, Jong Hyun;Lim, Jae Oh;Cho, Seong Kang;Kim, Young Kuk;Lee, An Chul;Choi, Mi Young;Boo, Young Min;Park, Soo Hyun
    • Korean Journal of Plant Resources
    • /
    • v.28 no.6
    • /
    • pp.704-709
    • /
    • 2015
  • Safflower (Carthamus tinctorius L.) seeds have long been clinically used in Korea to promote bone formation and prevent osteoporosis. In addition, the safflower buds (SB) were found to have more useful functional ingredients than safflower seed. Thus, we investigated the preventive effects of SB diet in ovariectomized (OVX) rats. The rats were divided into five groups; sham operated group, OVX alone group, OVX plus 17β-estradiol (E2 10 μg/kg, i.p.) and OVX plus SB diet feeding group (0.3% or 1%). Feeding of SB diet (0.3% or 3%) to OVX rats markedly increased trabecular formation in femur compared to OVX rats. Feeding of SB diet (0.3% or 3%) to OVX rats also decreased TRAP activity compared to OVX rats. These results suggest that SB diets have bone sparing effects by the decrease of osteoclast activity. We also observed that OVX rats fed with SB diet (0.3% or 3%) exhibited the decrease of calcium and phosphorus in serum compared to OVX-induced rats. Therefore, SB may be beneficial for the patients of osteoporosis, especially in postmenopausal women.

A Study of Adaptive Bone Remodeling by Cellular Automata Method (복잡계의 세포자동화법을 이용한 뼈의 적응적 재구축에 관한 연구)

  • Moon, Byung-Young;Park, Jung-Hong;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1103-1109
    • /
    • 2003
  • An adaptive bone remodeling is simulated by using the cellular automata (CA) method. It is assumed that bone tissue consist of bone marrow, osteoclast, osteoblast cell or osteoprogenitor cell. Two types of local rule are adopted; those are the metabolism rule and adaptive bone formation rule. The metabolism rule is based on the interactions of cells and the bone formation rule is based on the adaptation against the mechanical stimulus. The history of load and memory of mechanical stimulus are also considered in the local rules. As a result, the pattern of distribution of the bone tissue is dynamically adequate and it is similar to intact cancellous bone.

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo;Park, Hyun-Jung;Son, Ho-Jung;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.880-887
    • /
    • 2017
  • We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

STUDY ON THE REGULATION OF OSTEOCLAST AND T CELL ACTIVATION VIA CELL MEMBRANE PROTEINS OF TNF FAMILY, CD137 LIGAND AND RANK LIGAND (TNF계 CD137L 및 RANKL의 파골세포와 T 세포에 대한 활성조절)

  • Hong, Sung-Joon;Park, Jae-Hong;Lee, Hyeon-Woo;Lee, Keung-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.597-606
    • /
    • 2008
  • Resorption of alveolar bone in periodontitis is due to excessive differentiation and activation of osteoclasts. Bacterial antigens causing periodontitis activates CD4 T cells, which leads to expressing RANK ligand (RANKL) on CD4 T cells. RANKL binds RANK on preosteoclasts or osteoclasts, and enhances the differentiation preosteoclasts into osteoclasts and the activation of mature osteoclasts. CD137, one of TNF receptor (TNFR) family, expressed on activated T cells binds with CD137 ligand (CD137L) on antigen presenting cells. Cross-linking of CD137 by CD137L acts as T cell co-stimulatory signals and, therefore, enhances the activation of T cell. In this study, I elucidated the biological responses of CD137L on (pre)osteoclasts and RANKL on T cells in the context of in vivo interaction between T cells and osteoclasts. RAW264.7, murine monocytic cells, constitutively express CD137L. Ligation of CD137L with anti-CD137L mAb inhibited RANKL-induced osteoclast formation in a dosedependent manner. Bone marrow cells are expressed CD137L by the treatment with M-CSF. Cross-linking of CD137L abolished M-CSF/ RANKL-evoked the formation of multi-nucleated osteoclasts. Both mouse CD4 and CD8 T cells are expressed RANKL following their activation. Ligation of RANKL with OPG, the decoy receptor for RANKL, inhibited both CD4 and CD8 T cell proliferation. These effects were attributed to RANKL-induced apoptosis. These data indicate that CD137L and RANKL on osteoclasts and T cells, respectively provide them with inhibitory signal.

  • PDF

Effects of Extracts from Sarcocarp, Peels, and Seeds of Avocado on Osteoblast Differentiation and Osteoclast Formation (아보카도 과육, 과피 및 씨 추출물이 조골세포 분화 및 파골세포 형성에 미치는 영향)

  • Kim, Mi-Jin;Im, Nam-Kyung;Yu, Mi-Hee;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.919-927
    • /
    • 2011
  • Avocado (Persea americana Mill., Family Lauraceae) is an important subtropical crop in the Americas where it has been cultivated for several thousand years. To investigate the bioactivities of avocado, which acts on bone formation, we prepared methanol extracts from the sarcocarp, peels, and seeds of avocado. The methanol extracts of peels and seeds showed higher bone-forming activity than avocado sarcocarp extracts accompanied by MC3T3-E1 osteoblast proliferation and alkaline phosphatase (ALP) activity. Additionally, the extracts of sarcocarp and peel from avocado also decreased tartrate-resistant acid phosphatase (TRAP) activity against differentiation of osteoclasts, derived from mouse bone marrow macrophages. The hexane fraction from avocado peels showed strong bone-forming activity accompanied by osteoblast proliferation and ALP activity (170.7${\pm}$8.4%), and the ethyl acetate fraction from avocado peel decreased TRAP activity (5.2${\pm}$0.3%) and differentiated osteoclasts at 50 ${\mu}g$/mL. Therefore, avocado is expected to be a natural source for developing medicinal agents to prevent bone-related diseases, such as osteoporosis, by increasing osteoblast differentiation and reducing osteoclast activity.

Effects of Sulraphane on Osteoclastogenesis in RAW 264.7 (RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sulforaphane, isolated from the Broccoli(Brassica oleracea var. italia) florets, inhibits the production of inflamatory cytokine. In the present study, we determined inhibitory effect of sulforaphane on Receptor activator of nuclear factor κB ligand(RANKL)-induced osteoclast formation. Sulforaphane inhibited the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase(TRAP), cathepsin K, matrix metalloproteinase 9(MMP-9), and calcitonin receptor in RANKL-induced RAW 264.7 macrophage. Also, sluforaphane inhibited the expression of osteoclast protein, such as TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6) and transcription factor nuclease factor of activated T cells(NFAT)c1. Sulforaphane inhibited RANKL-induced activiation of nuclear factor kappaB(NF-kappaB) by suppression RANKL-mediated NF-kappaB transcriptional acitivation. We are confirmed that sulforaphane inhibits not only transcriptional activity of NF-kappaB but also expressions of the osteoclastogenesis factors(TRAP, cathepsin K, MMP-9, calcitonin, TRAF6) and trranscription factor NFATc1.