STUDY ON THE REGULATION OF OSTEOCLAST AND T CELL ACTIVATION VIA CELL MEMBRANE PROTEINS OF TNF FAMILY, CD137 LIGAND AND RANK LIGAND

TNF계 CD137L 및 RANKL의 파골세포와 T 세포에 대한 활성조절

  • Hong, Sung-Joon (Department of Pediatric Dentistry and Institute of Oral Biology, School of Dentistry, Kyung Hee University) ;
  • Park, Jae-Hong (Department of Pediatric Dentistry and Institute of Oral Biology, School of Dentistry, Kyung Hee University) ;
  • Lee, Hyeon-Woo (Department of Phamacology and Institute of Oral Biology, School of Dentistry, Kyung Hee University) ;
  • Lee, Keung-Ho (Department of Pediatric Dentistry and Institute of Oral Biology, School of Dentistry, Kyung Hee University)
  • 홍성준 (경희대학교 치과대학 소아치과학교실 구강생물학 연구소) ;
  • 박재홍 (경희대학교 치과대학 소아치과학교실 구강생물학 연구소) ;
  • 이현우 (경희대학교 치과대학 치과약리학교실 구강생물학 연구소) ;
  • 이긍호 (경희대학교 치과대학 소아치과학교실 구강생물학 연구소)
  • Published : 2008.11.30

Abstract

Resorption of alveolar bone in periodontitis is due to excessive differentiation and activation of osteoclasts. Bacterial antigens causing periodontitis activates CD4 T cells, which leads to expressing RANK ligand (RANKL) on CD4 T cells. RANKL binds RANK on preosteoclasts or osteoclasts, and enhances the differentiation preosteoclasts into osteoclasts and the activation of mature osteoclasts. CD137, one of TNF receptor (TNFR) family, expressed on activated T cells binds with CD137 ligand (CD137L) on antigen presenting cells. Cross-linking of CD137 by CD137L acts as T cell co-stimulatory signals and, therefore, enhances the activation of T cell. In this study, I elucidated the biological responses of CD137L on (pre)osteoclasts and RANKL on T cells in the context of in vivo interaction between T cells and osteoclasts. RAW264.7, murine monocytic cells, constitutively express CD137L. Ligation of CD137L with anti-CD137L mAb inhibited RANKL-induced osteoclast formation in a dosedependent manner. Bone marrow cells are expressed CD137L by the treatment with M-CSF. Cross-linking of CD137L abolished M-CSF/ RANKL-evoked the formation of multi-nucleated osteoclasts. Both mouse CD4 and CD8 T cells are expressed RANKL following their activation. Ligation of RANKL with OPG, the decoy receptor for RANKL, inhibited both CD4 and CD8 T cell proliferation. These effects were attributed to RANKL-induced apoptosis. These data indicate that CD137L and RANKL on osteoclasts and T cells, respectively provide them with inhibitory signal.

본 연구는 TNFR family인 CD137 및 RANK, 파골세포의 CD137L와 T 세포의 RANKL 간의 역신호에 의한 이들 세포 의 역할을 알아보고자 하였다. 이에 RANKL 및 CD137L 자극으로 유도되는 역신호 전달에 의한 T 세포 활성과 파골세포분 화에 미치는 영향을 규명하고자 웅성 생쥐의 골수세포와 T 세포를 공동배양하여 다음과 같은 결과를 얻었다. 1. 생쥐 단핵세포주 및 골수유도 단핵전구세포에서 CD137L이 발현되며, CD137L 단클론 항체로 자극을 주었을 경우 파 골세포 표지단백질인 TRAP 양성 파골세포의 형성이 억제되었다. 2. 활성화된 $CD4^+$$CD8^+$ T 세포에서 RANKL을 발현하였으며 RANKL의 유사 수용체인 OPG 재조합 단백질을 처리 하여 $CD4^+$$CD8^+$ T 세포의 세포증식이 억제되었다. 이 연구의 결과는 CD137 자극에 의한 T 세포활성 및 RANK 자극에 의한 파골세포분화 및 활성이 각각 수용체에 결합하 는 라이겐드의 역신호에 의해 억제되었는데, 이는 파골세포와 T 세포의 과도한 활성을 제어하는 생체의 항상성조절에 관여하 는 기전으로 생각된다.

Keywords

References

  1. Chambers TJ : Regulation of the differentiation and function of osteoclasts. J Pathol, 192:4-13, 2000. https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH645>3.0.CO;2-Q
  2. Teitlelbaum SL : Bone resorption by osteoclasts. Science, 289:1504-1508, 2000. https://doi.org/10.1126/science.289.5484.1504
  3. Rodan GA, Martin TJ : Therapeutic approaches to bone diseases. Science, 289:1508-1514, 2000. https://doi.org/10.1126/science.289.5484.1508
  4. Takahashi N, Yamana H, Yoshiki S, et al. : Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology, 122:1373-1382, 1988. https://doi.org/10.1210/endo-122-4-1373
  5. Khosla S : Minireview: the OPG/RANKL/RANK system. Endocrinology, 142: 5050-5055, 2001. https://doi.org/10.1210/en.142.12.5050
  6. Kawai T, Matsuyama T, Hosokawa Y, et al. : B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol, 9:87-98, 2006.
  7. Erciyas K, Orbak R, Kavrut F, et al. : The changes in T lymphocyte subsets following periodontal treatment in patients with chronic periodontitis. J Periodontal Res, 41:165-170, 2006. https://doi.org/10.1111/j.1600-0765.2005.00855.x
  8. Brunetti G, Colucci S, Pignataro P, et al. : T cells support osteoclastogenesis in an in vitro model derived from human periodontitis patients. J Periodontol, 76:1675-1680, 2005. https://doi.org/10.1902/jop.2005.76.10.1675
  9. Sun Y, Blink SE, Liu W, et al. : Inhibition of Th2-mediated allergic airway inflammatory disease by CD137 costimulation. J Immunol, 177:814-821, 2006.
  10. Lee HW, Park SJ, Choi BK, et al. : 4-1BB promotes the survival of $CD8^+$ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol, 169:4882-4888, 2002.
  11. Lee HW, Nam KO, Park SJ, et al. : 4-1BB enhances CD8+ T cell expansion by regulating cell cycle progression through changes in expression of cyclins D and E and cyclin-dependent kinase inhibitor p27kip1. Eur J Immunol, 33:2133-2141, 2003. https://doi.org/10.1002/eji.200323996
  12. Lee HW, Nam KO, Seo SK, et al. : 4-1BB crosslinking enhances the survival and cell cycle progression of CD4 T lymphocytes. Cell Immunol, 223:143-150, 2003. https://doi.org/10.1016/S0008-8749(03)00169-2
  13. Nam KO, Kang H, Shin SM, et al. : Cross-linking of 4-1BB activates TCR-signaling pathways in $CD8^+$ T lymphocytes. J Immunol, 174: 1898-1905, 2005.
  14. Saito K, Ohara N, Hotokezaka H, et al. : Infectionindued upregulation of the costimulatory molecule 4-1BB in osteoblastic cells and its inhibitory effect on M-CSF/RANKL-induced in vitro osteoclastogenesis. J Biol Chem, 279:13555-13563, 2004. https://doi.org/10.1074/jbc.M303791200
  15. Watts AD, Hunt NH, Wanigasekara Y, et al. : A casein kinase I motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in 'reverse signalling'. EMBO J, 18:2119-2126, 1999. https://doi.org/10.1093/emboj/18.8.2119
  16. Yasuda H, Shima N, Nakagawa N, et al. : Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci. USA 95:3597-3602, 1998. https://doi.org/10.1073/pnas.95.7.3597
  17. Lacey DL, Timms E, Tan HL, et al. : Oste-oprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93:165-176, 1998. https://doi.org/10.1016/S0092-8674(00)81569-X
  18. Nakagawa N, Kinosaki M, Yamaguchi K, et al. : RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun, 253:395-400, 1998. https://doi.org/10.1006/bbrc.1998.9788
  19. Marks SC Jr : Osteoclast biology: Lessons from mammalian mutations. Am. J Med Genet, 34:43-53 1989. https://doi.org/10.1002/ajmg.1320340110
  20. McLean W, Olsen BR : Mouse models of abnormal skeletal development and homeostasis. Trends Genet, 17:S38-S43, 2001. https://doi.org/10.1016/S0168-9525(01)02458-1
  21. Simonet WS, Lacey DL, Dunstan CR, et al. : Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 89:309-319, 1997. https://doi.org/10.1016/S0092-8674(00)80209-3
  22. Yasuda H, Shima N, Nakagawa N, et al. : Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 139:1329-1337, 1998. https://doi.org/10.1210/en.139.3.1329
  23. Morony S, Capparelli C, Lee R, et al. : A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1, TNF-alpha, PTH, PTHrP, and 1,25(OH)2D3. J Bone Miner Res, 14:1478-1485, 1999. https://doi.org/10.1359/jbmr.1999.14.9.1478
  24. Anderson DM, Maraskovsky E, Billingsley WL, et al. : A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390:175-179, 1997. https://doi.org/10.1038/36593
  25. Li J, Sarosi I, Yan XQ, et al. : RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci, USA 97:1566-1571, 2000. https://doi.org/10.1073/pnas.97.4.1566
  26. Hofbauer LC, Khosla S, Dunstan CR, et al. : The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 15:2-12, 2000. https://doi.org/10.1359/jbmr.2000.15.1.2
  27. Theill LE, Boyle WJ, Penninger JM : RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol, 20:795-823, 2002. https://doi.org/10.1146/annurev.immunol.20.100301.064753
  28. Udagawa N, Takahashi N, Yasuda H, et al. : Osteoprotegerin produced by osteoblasts is an impor