DOI QR코드

DOI QR Code

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo (Department of Biological Sciences, University of Ulsan) ;
  • Park, Hyun-Jung (Department of Biological Sciences, University of Ulsan) ;
  • Son, Ho-Jung (Department of Biological Sciences, University of Ulsan) ;
  • Choi, Hye-Seon (Department of Biological Sciences, University of Ulsan)
  • Received : 2017.09.25
  • Accepted : 2017.10.16
  • Published : 2017.11.30

Abstract

We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

Acknowledgement

Supported by : NRF

References

  1. Budanov, A.V., and Karin, M. (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451-460. https://doi.org/10.1016/j.cell.2008.06.028
  2. Cejka, D., Hayer, S., Niederreiter, B., Sieghart, W., Fuereder, T., Zwerina, J., and Schett, G. (2010). Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 62, 2294-2302. https://doi.org/10.1002/art.27504
  3. Chamoux, E., Couture, J., Bisson, M., Morissette, J., Brown, J.P., and Roux, S. (2009). The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts. Mol. Endocrinol. 23, 1668-1680. https://doi.org/10.1210/me.2009-0066
  4. Chang, N.C., Nguyen, M., Germain, M., and Shore, G.C. (2010). Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J. 29, 606-618. https://doi.org/10.1038/emboj.2009.369
  5. Chen, Y., McMillan-Ward, E., Kong, J., Israels, S.J., and Gibson, S.B. (2007). Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci. 120, 4155-4166. https://doi.org/10.1242/jcs.011163
  6. Chen, Y., Azad, M.B., and Gibson, S.B. (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16, 1040-1052. https://doi.org/10.1038/cdd.2009.49
  7. Chung, Y.H., Yoon, S.Y., Choi, B., Sohn, D.H., Yoon, K.H., Kim, W.J., Kim, D.H., and Chang, E.J. (2012). Microtubule-associated protein light chain 3 regulates Cdc42-dependent actin ring formation in osteoclast. Int. J. Biochem. Cell Biol. 44, 989-997. https://doi.org/10.1016/j.biocel.2012.03.007
  8. Dames, S.A., Mulet, J.M., Rathgeb-Szabo, K., Hall, M.N., and Grzesiek, S. (2005). The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J. Biol. Chem. 280, 20558-20564. https://doi.org/10.1074/jbc.M501116200
  9. DeSelm, C.J., Miller, B.C., Zou, W., Beatty, W.L., van Meel, E., Takahata, Y., Klumperman, J., Tooze, S.A., Teitelbaum, S.L., and Virgin, H.W. (2011). Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell 21, 966-974. https://doi.org/10.1016/j.devcel.2011.08.016
  10. Fujita, K., Maeda, D., Xiao, Q., and Srinivasula, S.M. (2011). Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proc. Natl. Acad. Sci. USA 108, 1427-1432. https://doi.org/10.1073/pnas.1014156108
  11. Huang, J., and Brumell, J.H. (2009). NADPH oxidases contribute to autophagy regulation. Autophagy 5, 887-889. https://doi.org/10.4161/auto.9125
  12. Jimi, E., Akiyama, S., Tsuruka,i T., Okahashi, N., Kobayashi, K., Udagawa, N., Nishihara, T., and Suda, T. (1999). Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163, 434-442.
  13. Ke, K., Sul, O.J., Choi, E.K., Safdar, A.M., Kim, E.S., and Choi, H.S. (2014). Reactive oxygen species induce the association of SHP-1 with c-Src and the oxidation of both to enhance osteoclast survival. Am. J. Physiol. Endocrinol. Metab. 307, E61-E70 https://doi.org/10.1152/ajpendo.00044.2014
  14. Kirkland, R.A., Adibhatla, R.M., Hatcher, J.F., and Franklin, J.L. (2002). Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience 115, 587-602. https://doi.org/10.1016/S0306-4522(02)00512-2
  15. Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N., and Lee, S.Y. (2005). A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-859. https://doi.org/10.1182/blood-2004-09-3662
  16. Lin, N.Y., Beyer, C., Giessl, A., Kireva, T., Scholtysek, C., Uderhardt, S., Munoz, L.E., Dees, C., Distler, A., Wirtz, S., et al. (2013). Autophagy regulates $TNF{\alpha}$-mediated joint destruction in experimental arthritis. Ann. Rheum. Dis. 72, 761-768. https://doi.org/10.1136/annrheumdis-2012-201671
  17. Orcel, P., Feuga, M., Bielakoff, J., and De Vernejoul, M.C. (1993). Local bone injections of LPS and M-CSF increase bone resorption by different pathways in vivo in rats. Am. J. Physiol. 264, E391-397.
  18. Park, H., Noh, A., Long, S.M., Kang, J., Sim, J., Lee, D., and Yim, M. (2014). Peroxiredoxin II negatively regulates lipopolysaccharide-induced osteoclast formation and bone loss via JNK and STAT3. Antioxid. Redox Signal. 22, 63-77.
  19. Sato, M., Bryant, H.U., Dodge, J.A., Davis, H., Matter, W.F., and Vlahos, C.J. (1996). Effects of wortmannin analogs on bone in vitro and in vivo. J. Pharmacol. Exp. Ther. 277, 543-550.
  20. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749-1760. https://doi.org/10.1038/sj.emboj.7601623
  21. Sharifi, M.N., Mowers, E.E., Drake, L.E., and Macleod, K.F. (2015). Measuring autophagy in stressed cells. Methods Mol. Biol. 1292, 129-150.
  22. Shi, J., Wang, L., Zhang, H., Jie, Q., Li, X., Shi, Q., Huang, Q., Gao, B., Han, Y., Guo, K., et al. (2015). Glucocorticoids: dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy. Bone 79, 222-232. https://doi.org/10.1016/j.bone.2015.06.014
  23. Takami, M., Kim, N., Rho, J., and Choi, Y. (2002). Stimulation by toll-like receptors inhibits osteoclast differentiation. J. Immunol. 169, 1516-1523. https://doi.org/10.4049/jimmunol.169.3.1516
  24. Ti, Y., Zhou, L., Wang, R., and Zhao, J. (2015). Inhibition of microtubule dynamics affects podosome belt formation during osteoclast induction. Cell Biochem. Biophys. 71, 741-747. https://doi.org/10.1007/s12013-014-0258-0
  25. Wang, K., Niu, J., Kim, H., and Kolattukudy, P.E. (2011). Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J. Mol. Cell Biol. 3, 360-368. https://doi.org/10.1093/jmcb/mjr021
  26. Xiu, Y., Xu, H., Zhao, C., Li, J., Morita, Y., Yao, Z., Xin, L., and Boyce, B.F. (2014). Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J. Clin. Invest. 124, 297-310. https://doi.org/10.1172/JCI66947
  27. Zhang, L., Guo, Y.F., Liu, Y.Z., Liu, Y.J., Xiong, D.H., Liu, X.G., Wang, L., Yang, T.L., Lei, S.F., Guo, Y., et al. (2010). Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD. J. Bone Miner. Res. 25, 1572-1580. https://doi.org/10.1002/jbmr.36
  28. Zhao, Y., Chen, G., Zhang, W., Xu, N., Zhu, J.Y., Jia, J., Sun, Z.J., Wang, Y.N., and Zhao, Y.F. (2012). Autophagy regulates hypoxia-induced osteoclastogenesis through the HIF-$1{\alpha}$/BNIP3 signaling pathway. J. Cell. Physiol. 227, 639-648. https://doi.org/10.1002/jcp.22768
  29. Zhong, Y., Wang, Q.J., Li, X., Yan, Y., Backer, J.M., Chait, B.T., Heintz, N., and Yue, Z. (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11, 468-476. https://doi.org/10.1038/ncb1854